Documentation

Mathlib.RingTheory.RingHom.OpenImmersion

Standard Open Immersion #

We define the property RingHom.IsStandardOpenImmersion on ring homomorphisms: it means that the morphism is a localization map away from some element. We also define the equivalent Algebra.IsStandardOpenImmersion.

A standard open immersion is one that is a localization map away from some element.

Instances
    def RingHom.IsStandardOpenImmersion {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (f : R →+* S) :

    A standard open immersion is one that is a localization map away from some element.

    Equations
    Instances For

      A bijective ring map is a standard open immersion.

      The identity map of a ring is a standard open immersion.

      theorem RingHom.IsStandardOpenImmersion.comp {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [CommRing T] {f : R →+* S} {g : S →+* T} (hf : f.IsStandardOpenImmersion) (hg : g.IsStandardOpenImmersion) :

      The composition of two standard open immersions is a standard open immersion.