The meta properties of surjective ring homomorphisms. #
Main results #
Let R
be a commutative ring, M
be a submonoid of R
.
surjective_localizationPreserves
:M⁻¹R →+* M⁻¹S
is surjective ifR →+* S
is surjective.surjective_ofLocalizationSpan
:R →+* S
is surjective if there exists a set{ r }
that spansR
such thatRᵣ →+* Sᵣ
is surjective.surjective_localRingHom_of_surjective
: A surjective ring homomorphismR →+* S
induces a surjective homomorphismR_{f⁻¹(P)} →+* S_P
for every prime idealP
ofS
.
theorem
RingHom.surjective_stableUnderComposition :
StableUnderComposition fun {X Y : Type u_1} [CommRing X] [CommRing Y] (f : X →+* Y) => Function.Surjective ⇑f
theorem
RingHom.surjective_respectsIso :
RespectsIso fun {X Y : Type u_1} [CommRing X] [CommRing Y] (f : X →+* Y) => Function.Surjective ⇑f
theorem
RingHom.surjective_isStableUnderBaseChange :
IsStableUnderBaseChange fun {X Y : Type u_1} [CommRing X] [CommRing Y] (f : X →+* Y) => Function.Surjective ⇑f
theorem
RingHom.surjective_localizationPreserves :
LocalizationPreserves fun {X Y : Type u_1} [CommRing X] [CommRing Y] (f : X →+* Y) => Function.Surjective ⇑f
M⁻¹R →+* M⁻¹S
is surjective if R →+* S
is surjective.
theorem
RingHom.surjective_ofLocalizationSpan :
OfLocalizationSpan fun {X Y : Type u_1} [CommRing X] [CommRing Y] (f : X →+* Y) => Function.Surjective ⇑f
R →+* S
is surjective if there exists a set { r }
that spans R
such that
Rᵣ →+* Sᵣ
is surjective.
theorem
RingHom.surjective_localRingHom_of_surjective
{R S : Type u}
[CommRing R]
[CommRing S]
(f : R →+* S)
(h : Function.Surjective ⇑f)
(P : Ideal S)
[P.IsPrime]
:
Function.Surjective ⇑(Localization.localRingHom (Ideal.comap f P) P f ⋯)
A surjective ring homomorphism R →+* S
induces a surjective homomorphism R_{f⁻¹(P)} →+* S_P
for every prime ideal P
of S
.