Documentation

Mathlib.RingTheory.RootsOfUnity.Complex

Complex roots of unity #

In this file we show that the n-th complex roots of unity are exactly the complex numbers exp (2 * π * I * (i / n)) for i ∈ Finset.range n.

Main declarations #

theorem Complex.isPrimitiveRoot_iff (ζ : Complex) (n : Nat) (hn : Ne n 0) :
Iff (IsPrimitiveRoot ζ n) (Exists fun (i : Nat) => And (LT.lt i n) (Exists fun (x : i.Coprime n) => Eq (exp (HMul.hMul (HMul.hMul (HMul.hMul 2 (ofReal Real.pi)) I) (HDiv.hDiv i.cast n.cast))) ζ))

The complex n-th roots of unity are exactly the complex numbers of the form exp (2 * Real.pi * Complex.I * (i / n)) for some i < n.

theorem IsPrimitiveRoot.norm'_eq_one {ζ : Complex} {n : Nat} (h : IsPrimitiveRoot ζ n) (hn : Ne n 0) :
Eq (Norm.norm ζ) 1
theorem IsPrimitiveRoot.nnnorm_eq_one {ζ : Complex} {n : Nat} (h : IsPrimitiveRoot ζ n) (hn : Ne n 0) :
theorem IsPrimitiveRoot.arg_ext {n m : Nat} {ζ μ : Complex} ( : IsPrimitiveRoot ζ n) ( : IsPrimitiveRoot μ m) (hn : Ne n 0) (hm : Ne m 0) (h : Eq ζ.arg μ.arg) :
Eq ζ μ
theorem IsPrimitiveRoot.arg_eq_zero_iff {n : Nat} {ζ : Complex} ( : IsPrimitiveRoot ζ n) (hn : Ne n 0) :
Iff (Eq ζ.arg 0) (Eq ζ 1)
theorem IsPrimitiveRoot.arg_eq_pi_iff {n : Nat} {ζ : Complex} ( : IsPrimitiveRoot ζ n) (hn : Ne n 0) :
Iff (Eq ζ.arg Real.pi) (Eq ζ (-1))
theorem IsPrimitiveRoot.arg {n : Nat} {ζ : Complex} (h : IsPrimitiveRoot ζ n) (hn : Ne n 0) :
Exists fun (i : Int) => And (Eq ζ.arg (HMul.hMul (HDiv.hDiv i.cast n.cast) (HMul.hMul 2 Real.pi))) (And (IsCoprime i n.cast) (LT.lt i.natAbs n))