Complex roots of unity #
In this file we show that the n
-th complex roots of unity
are exactly the complex numbers exp (2 * π * I * (i / n))
for i ∈ Finset.range n
.
Main declarations #
Complex.mem_rootsOfUnity
: the complexn
-th roots of unity are exactly the complex numbers of the formexp (2 * π * I * (i / n))
for somei < n
.Complex.card_rootsOfUnity
: the number ofn
-th roots of unity is exactlyn
.Complex.norm_rootOfUnity_eq_one
: A complex root of unity has norm1
.
theorem
Complex.card_rootsOfUnity
(n : Nat)
[NeZero n]
:
Eq (Fintype.card (Subtype fun (x : Units Complex) => Membership.mem (rootsOfUnity n Complex) x)) n
theorem
IsPrimitiveRoot.norm'_eq_one
{ζ : Complex}
{n : Nat}
(h : IsPrimitiveRoot ζ n)
(hn : Ne n 0)
:
theorem
IsPrimitiveRoot.nnnorm_eq_one
{ζ : Complex}
{n : Nat}
(h : IsPrimitiveRoot ζ n)
(hn : Ne n 0)
:
Eq (NNNorm.nnnorm ζ) 1
theorem
IsPrimitiveRoot.arg_ext
{n m : Nat}
{ζ μ : Complex}
(hζ : IsPrimitiveRoot ζ n)
(hμ : IsPrimitiveRoot μ m)
(hn : Ne n 0)
(hm : Ne m 0)
(h : Eq ζ.arg μ.arg)
:
Eq ζ μ
theorem
IsPrimitiveRoot.arg_eq_zero_iff
{n : Nat}
{ζ : Complex}
(hζ : IsPrimitiveRoot ζ n)
(hn : Ne n 0)
:
theorem
Complex.norm_eq_one_of_mem_rootsOfUnity
{ζ : Units Complex}
{n : Nat}
[NeZero n]
(hζ : Membership.mem (rootsOfUnity n Complex) ζ)
: