Documentation

Mathlib.RingTheory.TensorProduct.MonoidAlgebra

Monoid algebras commute with base change #

In this file we show that monoid algebras are stable under pushout.

TODO #

Additivise

noncomputable def MonoidAlgebra.tensorEquiv (R : Type u_1) {M : Type u_2} (A : Type u_4) (B : Type u_5) [CommSemiring R] [CommMonoid M] [CommSemiring A] [Algebra R A] [CommSemiring B] [Algebra R B] :

The base change of MonoidAlgebra B M to an R-algebra A is isomorphic to MonoidAlgebra (A ⊗[R] B) M as an A-algebra.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem MonoidAlgebra.tensorEquiv_tmul {R : Type u_1} {M : Type u_2} {A : Type u_4} {B : Type u_5} [CommSemiring R] [CommMonoid M] [CommSemiring A] [Algebra R A] [CommSemiring B] [Algebra R B] (a : A) (p : MonoidAlgebra B M) :
    @[simp]
    theorem MonoidAlgebra.tensorEquiv_symm_single {R : Type u_1} {M : Type u_2} {A : Type u_4} {B : Type u_5} [CommSemiring R] [CommMonoid M] [CommSemiring A] [Algebra R A] [CommSemiring B] [Algebra R B] (m : M) (a : A) (b : B) :
    (tensorEquiv R A B).symm (single m (a ⊗ₜ[R] b)) = a ⊗ₜ[R] single m b
    noncomputable def MonoidAlgebra.scalarTensorEquiv (R : Type u_1) {M : Type u_2} (A : Type u_4) [CommSemiring R] [CommMonoid M] [CommSemiring A] [Algebra R A] :

    The base change of MonoidAlgebra R M to an R-algebra A is isomorphic to MonoidAlgebra A M as an A-algebra.

    Equations
    Instances For
      @[simp]
      theorem MonoidAlgebra.scalarTensorEquiv_tmul {R : Type u_1} {M : Type u_2} {A : Type u_4} [CommSemiring R] [CommMonoid M] [CommSemiring A] [Algebra R A] (a : A) (p : MonoidAlgebra R M) :
      @[simp]
      theorem MonoidAlgebra.scalarTensorEquiv_symm_single {R : Type u_1} {M : Type u_2} {A : Type u_4} [CommSemiring R] [CommMonoid M] [CommSemiring A] [Algebra R A] (m : M) (a : A) :
      instance MonoidAlgebra.instIsPushout {R : Type u_1} {M : Type u_2} {S : Type u_3} {A : Type u_4} {B : Type u_5} [CommSemiring R] [CommSemiring S] [Algebra R S] [CommMonoid M] [CommSemiring A] [Algebra R A] [CommSemiring B] [Algebra S B] [Algebra A B] [Algebra R B] [IsScalarTower R A B] [IsScalarTower R S B] [Algebra.IsPushout R S A B] :
      instance MonoidAlgebra.instIsPushout_1 {R : Type u_1} {M : Type u_2} {S : Type u_3} {A : Type u_4} {B : Type u_5} [CommSemiring R] [CommSemiring S] [Algebra R S] [CommMonoid M] [CommSemiring A] [Algebra R A] [CommSemiring B] [Algebra S B] [Algebra A B] [Algebra R B] [IsScalarTower R A B] [IsScalarTower R S B] [Algebra.IsPushout R A S B] :