Documentation

Mathlib.RingTheory.TensorProduct.MonoidAlgebra

Monoid algebras commute with base change #

In this file we show that monoid algebras are stable under pushout.

TODO #

Additivise

noncomputable def AddMonoidAlgebra.tensorEquiv.invFun {R : Type u_1} {M : Type u_2} {A : Type u_4} {B : Type u_5} [CommSemiring R] [CommSemiring A] [CommSemiring B] [Algebra R A] [Algebra R B] [AddCommMonoid M] :

Implementation detail.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    Implementation detail.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem AddMonoidAlgebra.tensorEquiv.invFun_tmul (R : Type u_1) {M : Type u_2} (A : Type u_4) (B : Type u_5) [CommSemiring R] [CommSemiring A] [CommSemiring B] [Algebra R A] [Algebra R B] [AddCommMonoid M] (a : A) (m : M) (b : B) :
      @[simp]
      theorem MonoidAlgebra.tensorEquiv.invFun_tmul {R : Type u_1} {M : Type u_2} {A : Type u_4} {B : Type u_5} [CommSemiring R] [CommSemiring A] [CommSemiring B] [Algebra R A] [Algebra R B] [CommMonoid M] (a : A) (m : M) (b : B) :
      noncomputable def MonoidAlgebra.tensorEquiv (R : Type u_1) {M : Type u_2} (A : Type u_4) (B : Type u_5) [CommSemiring R] [CommSemiring A] [CommSemiring B] [Algebra R A] [Algebra R B] [CommMonoid M] :

      The base change of B[M] to an R-algebra A is isomorphic to (A ⊗[R] B)[M] as an A-algebra.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        noncomputable def AddMonoidAlgebra.tensorEquiv (R : Type u_1) {M : Type u_2} (A : Type u_4) (B : Type u_5) [CommSemiring R] [CommSemiring A] [CommSemiring B] [Algebra R A] [Algebra R B] [AddCommMonoid M] :

        The base change of B[M] to an R-algebra A is isomorphic to (A ⊗[R] B)[M] as an A-algebra.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem MonoidAlgebra.tensorEquiv_tmul {R : Type u_1} {M : Type u_2} {A : Type u_4} {B : Type u_5} [CommSemiring R] [CommSemiring A] [CommSemiring B] [Algebra R A] [Algebra R B] [CommMonoid M] (a : A) (p : MonoidAlgebra B M) :
          @[simp]
          theorem AddMonoidAlgebra.tensorEquiv_tmul {R : Type u_1} {M : Type u_2} {A : Type u_4} {B : Type u_5} [CommSemiring R] [CommSemiring A] [CommSemiring B] [Algebra R A] [Algebra R B] [AddCommMonoid M] (a : A) (p : AddMonoidAlgebra B M) :
          @[simp]
          theorem MonoidAlgebra.tensorEquiv_symm_single {R : Type u_1} {M : Type u_2} {A : Type u_4} {B : Type u_5} [CommSemiring R] [CommSemiring A] [CommSemiring B] [Algebra R A] [Algebra R B] [CommMonoid M] (m : M) (a : A) (b : B) :
          (tensorEquiv R A B).symm (single m (a ⊗ₜ[R] b)) = a ⊗ₜ[R] single m b
          @[simp]
          theorem AddMonoidAlgebra.tensorEquiv_symm_single {R : Type u_1} {M : Type u_2} {A : Type u_4} {B : Type u_5} [CommSemiring R] [CommSemiring A] [CommSemiring B] [Algebra R A] [Algebra R B] [AddCommMonoid M] (m : M) (a : A) (b : B) :
          (tensorEquiv R A B).symm (single m (a ⊗ₜ[R] b)) = a ⊗ₜ[R] single m b
          noncomputable def MonoidAlgebra.scalarTensorEquiv (R : Type u_1) {M : Type u_2} (A : Type u_4) [CommSemiring R] [CommSemiring A] [Algebra R A] [CommMonoid M] :

          The base change of R[M] to an R-algebra A is isomorphic to A[M] as an A-algebra.

          Equations
          Instances For

            The base change of R[M] to an R-algebra A is isomorphic to A[M] as an A-algebra.

            Equations
            Instances For
              @[simp]
              theorem MonoidAlgebra.scalarTensorEquiv_tmul {R : Type u_1} {M : Type u_2} {A : Type u_4} [CommSemiring R] [CommSemiring A] [Algebra R A] [CommMonoid M] (a : A) (p : MonoidAlgebra R M) :
              @[simp]
              theorem AddMonoidAlgebra.scalarTensorEquiv_tmul {R : Type u_1} {M : Type u_2} {A : Type u_4} [CommSemiring R] [CommSemiring A] [Algebra R A] [AddCommMonoid M] (a : A) (p : AddMonoidAlgebra R M) :
              @[simp]
              theorem MonoidAlgebra.scalarTensorEquiv_symm_single {R : Type u_1} {M : Type u_2} {A : Type u_4} [CommSemiring R] [CommSemiring A] [Algebra R A] [CommMonoid M] (m : M) (a : A) :
              @[simp]
              theorem AddMonoidAlgebra.scalarTensorEquiv_symm_single {R : Type u_1} {M : Type u_2} {A : Type u_4} [CommSemiring R] [CommSemiring A] [Algebra R A] [AddCommMonoid M] (m : M) (a : A) :
              instance MonoidAlgebra.instIsPushout {R : Type u_1} {M : Type u_2} {S : Type u_3} {A : Type u_4} {B : Type u_5} [CommSemiring R] [CommSemiring S] [CommSemiring A] [CommSemiring B] [Algebra R S] [Algebra R A] [CommMonoid M] [Algebra S B] [Algebra A B] [Algebra R B] [IsScalarTower R A B] [IsScalarTower R S B] [Algebra.IsPushout R S A B] :
              instance AddMonoidAlgebra.instIsPushout {R : Type u_1} {M : Type u_2} {S : Type u_3} {A : Type u_4} {B : Type u_5} [CommSemiring R] [CommSemiring S] [CommSemiring A] [CommSemiring B] [Algebra R S] [Algebra R A] [AddCommMonoid M] [Algebra S B] [Algebra A B] [Algebra R B] [IsScalarTower R A B] [IsScalarTower R S B] [Algebra.IsPushout R S A B] :
              instance MonoidAlgebra.instIsPushout' {R : Type u_1} {M : Type u_2} {S : Type u_3} {A : Type u_4} {B : Type u_5} [CommSemiring R] [CommSemiring S] [CommSemiring A] [CommSemiring B] [Algebra R S] [Algebra R A] [CommMonoid M] [Algebra S B] [Algebra A B] [Algebra R B] [IsScalarTower R A B] [IsScalarTower R S B] [Algebra.IsPushout R A S B] :
              instance AddMonoidAlgebra.instIsPushout' {R : Type u_1} {M : Type u_2} {S : Type u_3} {A : Type u_4} {B : Type u_5} [CommSemiring R] [CommSemiring S] [CommSemiring A] [CommSemiring B] [Algebra R S] [Algebra R A] [AddCommMonoid M] [Algebra S B] [Algebra A B] [Algebra R B] [IsScalarTower R A B] [IsScalarTower R S B] [Algebra.IsPushout R A S B] :