Documentation

Mathlib.Algebra.MonoidAlgebra.Basic

Monoid algebras #

Multiplicative monoids #

Non-unital, non-associative algebra structure #

theorem MonoidAlgebra.nonUnitalAlgHom_ext (k : Type u₁) {G : Type u₂} [Semiring k] [Mul G] {A : Type u₃} [NonUnitalNonAssocSemiring A] [DistribMulAction k A] {φ₁ φ₂ : MonoidAlgebra k G →ₙₐ[k] A} (h : ∀ (x : G), φ₁ (MonoidAlgebra.single x 1) = φ₂ (MonoidAlgebra.single x 1)) :
φ₁ = φ₂

A non_unital k-algebra homomorphism from MonoidAlgebra k G is uniquely defined by its values on the functions single a 1.

theorem MonoidAlgebra.nonUnitalAlgHom_ext' (k : Type u₁) {G : Type u₂} [Semiring k] [Mul G] {A : Type u₃} [NonUnitalNonAssocSemiring A] [DistribMulAction k A] {φ₁ φ₂ : MonoidAlgebra k G →ₙₐ[k] A} (h : φ₁.toMulHom.comp (MonoidAlgebra.ofMagma k G) = φ₂.toMulHom.comp (MonoidAlgebra.ofMagma k G)) :
φ₁ = φ₂

See note [partially-applied ext lemmas].

def MonoidAlgebra.liftMagma (k : Type u₁) {G : Type u₂} [Semiring k] [Mul G] {A : Type u₃} [NonUnitalNonAssocSemiring A] [Module k A] [IsScalarTower k A A] [SMulCommClass k A A] :

The functor G ↦ MonoidAlgebra k G, from the category of magmas to the category of non-unital, non-associative algebras over k is adjoint to the forgetful functor in the other direction.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem MonoidAlgebra.liftMagma_apply_apply (k : Type u₁) {G : Type u₂} [Semiring k] [Mul G] {A : Type u₃} [NonUnitalNonAssocSemiring A] [Module k A] [IsScalarTower k A A] [SMulCommClass k A A] (f : G →ₙ* A) (a : MonoidAlgebra k G) :
    ((MonoidAlgebra.liftMagma k) f) a = Finsupp.sum a fun (m : G) (t : k) => t f m
    @[simp]
    theorem MonoidAlgebra.liftMagma_symm_apply (k : Type u₁) {G : Type u₂} [Semiring k] [Mul G] {A : Type u₃} [NonUnitalNonAssocSemiring A] [Module k A] [IsScalarTower k A A] [SMulCommClass k A A] (F : MonoidAlgebra k G →ₙₐ[k] A) :
    (MonoidAlgebra.liftMagma k).symm F = F.toMulHom.comp (MonoidAlgebra.ofMagma k G)

    Algebra structure #

    instance MonoidAlgebra.algebra {k : Type u₁} {G : Type u₂} {A : Type u_3} [CommSemiring k] [Semiring A] [Algebra k A] [Monoid G] :

    The instance Algebra k (MonoidAlgebra A G) whenever we have Algebra k A.

    In particular this provides the instance Algebra k (MonoidAlgebra k G).

    Equations
    def MonoidAlgebra.singleOneAlgHom {k : Type u₁} {G : Type u₂} {A : Type u_3} [CommSemiring k] [Semiring A] [Algebra k A] [Monoid G] :

    Finsupp.single 1 as an AlgHom

    Equations
    • MonoidAlgebra.singleOneAlgHom = { toRingHom := MonoidAlgebra.singleOneRingHom, commutes' := }
    Instances For
      @[simp]
      theorem MonoidAlgebra.singleOneAlgHom_apply {k : Type u₁} {G : Type u₂} {A : Type u_3} [CommSemiring k] [Semiring A] [Algebra k A] [Monoid G] (a✝ : A) :
      MonoidAlgebra.singleOneAlgHom a✝ = Finsupp.single 1 a✝
      @[simp]
      theorem MonoidAlgebra.coe_algebraMap {k : Type u₁} {G : Type u₂} {A : Type u_3} [CommSemiring k] [Semiring A] [Algebra k A] [Monoid G] :
      theorem MonoidAlgebra.single_algebraMap_eq_algebraMap_mul_of {k : Type u₁} {G : Type u₂} {A : Type u_3} [CommSemiring k] [Semiring A] [Algebra k A] [Monoid G] (a : G) (b : k) :
      def MonoidAlgebra.liftNCAlgHom {k : Type u₁} {G : Type u₂} [CommSemiring k] [Monoid G] {A : Type u₃} [Semiring A] [Algebra k A] {B : Type u_3} [Semiring B] [Algebra k B] (f : A →ₐ[k] B) (g : G →* B) (h_comm : ∀ (x : A) (y : G), Commute (f x) (g y)) :

      liftNCRingHom as an AlgHom, for when f is an AlgHom

      Equations
      Instances For
        theorem MonoidAlgebra.algHom_ext {k : Type u₁} {G : Type u₂} [CommSemiring k] [Monoid G] {A : Type u₃} [Semiring A] [Algebra k A] ⦃φ₁ φ₂ : MonoidAlgebra k G →ₐ[k] A (h : ∀ (x : G), φ₁ (MonoidAlgebra.single x 1) = φ₂ (MonoidAlgebra.single x 1)) :
        φ₁ = φ₂

        A k-algebra homomorphism from MonoidAlgebra k G is uniquely defined by its values on the functions single a 1.

        theorem MonoidAlgebra.algHom_ext' {k : Type u₁} {G : Type u₂} [CommSemiring k] [Monoid G] {A : Type u₃} [Semiring A] [Algebra k A] ⦃φ₁ φ₂ : MonoidAlgebra k G →ₐ[k] A (h : (↑φ₁).comp (MonoidAlgebra.of k G) = (↑φ₂).comp (MonoidAlgebra.of k G)) :
        φ₁ = φ₂

        See note [partially-applied ext lemmas].

        def MonoidAlgebra.lift (k : Type u₁) (G : Type u₂) [CommSemiring k] [Monoid G] (A : Type u₃) [Semiring A] [Algebra k A] :

        Any monoid homomorphism G →* A can be lifted to an algebra homomorphism MonoidAlgebra k G →ₐ[k] A.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem MonoidAlgebra.lift_apply' {k : Type u₁} {G : Type u₂} [CommSemiring k] [Monoid G] {A : Type u₃} [Semiring A] [Algebra k A] (F : G →* A) (f : MonoidAlgebra k G) :
          ((MonoidAlgebra.lift k G A) F) f = Finsupp.sum f fun (a : G) (b : k) => (algebraMap k A) b * F a
          theorem MonoidAlgebra.lift_apply {k : Type u₁} {G : Type u₂} [CommSemiring k] [Monoid G] {A : Type u₃} [Semiring A] [Algebra k A] (F : G →* A) (f : MonoidAlgebra k G) :
          ((MonoidAlgebra.lift k G A) F) f = Finsupp.sum f fun (a : G) (b : k) => b F a
          theorem MonoidAlgebra.lift_def {k : Type u₁} {G : Type u₂} [CommSemiring k] [Monoid G] {A : Type u₃} [Semiring A] [Algebra k A] (F : G →* A) :
          ((MonoidAlgebra.lift k G A) F) = (MonoidAlgebra.liftNC (algebraMap k A) F)
          @[simp]
          theorem MonoidAlgebra.lift_symm_apply {k : Type u₁} {G : Type u₂} [CommSemiring k] [Monoid G] {A : Type u₃} [Semiring A] [Algebra k A] (F : MonoidAlgebra k G →ₐ[k] A) (x : G) :
          ((MonoidAlgebra.lift k G A).symm F) x = F (MonoidAlgebra.single x 1)
          @[simp]
          theorem MonoidAlgebra.lift_single {k : Type u₁} {G : Type u₂} [CommSemiring k] [Monoid G] {A : Type u₃} [Semiring A] [Algebra k A] (F : G →* A) (a : G) (b : k) :
          theorem MonoidAlgebra.lift_of {k : Type u₁} {G : Type u₂} [CommSemiring k] [Monoid G] {A : Type u₃} [Semiring A] [Algebra k A] (F : G →* A) (x : G) :
          ((MonoidAlgebra.lift k G A) F) ((MonoidAlgebra.of k G) x) = F x
          theorem MonoidAlgebra.lift_unique' {k : Type u₁} {G : Type u₂} [CommSemiring k] [Monoid G] {A : Type u₃} [Semiring A] [Algebra k A] (F : MonoidAlgebra k G →ₐ[k] A) :
          F = (MonoidAlgebra.lift k G A) ((↑F).comp (MonoidAlgebra.of k G))
          theorem MonoidAlgebra.lift_unique {k : Type u₁} {G : Type u₂} [CommSemiring k] [Monoid G] {A : Type u₃} [Semiring A] [Algebra k A] (F : MonoidAlgebra k G →ₐ[k] A) (f : MonoidAlgebra k G) :
          F f = Finsupp.sum f fun (a : G) (b : k) => b F (MonoidAlgebra.single a 1)

          Decomposition of a k-algebra homomorphism from MonoidAlgebra k G by its values on F (single a 1).

          def MonoidAlgebra.mapDomainNonUnitalAlgHom (k : Type u_4) (A : Type u_5) [CommSemiring k] [Semiring A] [Algebra k A] {G : Type u_6} {H : Type u_7} {F : Type u_8} [Mul G] [Mul H] [FunLike F G H] [MulHomClass F G H] (f : F) :

          If f : G → H is a homomorphism between two magmas, then Finsupp.mapDomain f is a non-unital algebra homomorphism between their magma algebras.

          Equations
          Instances For
            @[simp]
            theorem MonoidAlgebra.mapDomainNonUnitalAlgHom_apply (k : Type u_4) (A : Type u_5) [CommSemiring k] [Semiring A] [Algebra k A] {G : Type u_6} {H : Type u_7} {F : Type u_8} [Mul G] [Mul H] [FunLike F G H] [MulHomClass F G H] (f : F) (a✝ : G →₀ A) :
            theorem MonoidAlgebra.mapDomain_algebraMap {k : Type u₁} {G : Type u₂} {H : Type u_1} [CommSemiring k] [Monoid G] [Monoid H] (A : Type u₃) [Semiring A] [Algebra k A] {F : Type u_4} [FunLike F G H] [MonoidHomClass F G H] (f : F) (r : k) :
            def MonoidAlgebra.mapDomainAlgHom {G : Type u₂} [Monoid G] (k : Type u_4) (A : Type u_5) [CommSemiring k] [Semiring A] [Algebra k A] {H : Type u_6} {F : Type u_7} [Monoid H] [FunLike F G H] [MonoidHomClass F G H] (f : F) :

            If f : G → H is a multiplicative homomorphism between two monoids, then Finsupp.mapDomain f is an algebra homomorphism between their monoid algebras.

            Equations
            Instances For
              @[simp]
              theorem MonoidAlgebra.mapDomainAlgHom_apply {G : Type u₂} [Monoid G] (k : Type u_4) (A : Type u_5) [CommSemiring k] [Semiring A] [Algebra k A] {H : Type u_6} {F : Type u_7} [Monoid H] [FunLike F G H] [MonoidHomClass F G H] (f : F) (a✝ : G →₀ A) :
              @[simp]
              theorem MonoidAlgebra.mapDomainAlgHom_comp (k : Type u_4) (A : Type u_5) {G₁ : Type u_6} {G₂ : Type u_7} {G₃ : Type u_8} [CommSemiring k] [Semiring A] [Algebra k A] [Monoid G₁] [Monoid G₂] [Monoid G₃] (f : G₁ →* G₂) (g : G₂ →* G₃) :
              def MonoidAlgebra.domCongr (k : Type u₁) {G : Type u₂} {H : Type u_1} [CommSemiring k] [Monoid G] [Monoid H] (A : Type u₃) [Semiring A] [Algebra k A] (e : G ≃* H) :

              If e : G ≃* H is a multiplicative equivalence between two monoids, then MonoidAlgebra.domCongr e is an algebra equivalence between their monoid algebras.

              Equations
              Instances For
                theorem MonoidAlgebra.domCongr_toAlgHom (k : Type u₁) {G : Type u₂} {H : Type u_1} [CommSemiring k] [Monoid G] [Monoid H] (A : Type u₃) [Semiring A] [Algebra k A] (e : G ≃* H) :
                @[simp]
                theorem MonoidAlgebra.domCongr_apply (k : Type u₁) {G : Type u₂} {H : Type u_1} [CommSemiring k] [Monoid G] [Monoid H] (A : Type u₃) [Semiring A] [Algebra k A] (e : G ≃* H) (f : MonoidAlgebra A G) (h : H) :
                ((MonoidAlgebra.domCongr k A e) f) h = f (e.symm h)
                @[simp]
                theorem MonoidAlgebra.domCongr_support (k : Type u₁) {G : Type u₂} {H : Type u_1} [CommSemiring k] [Monoid G] [Monoid H] (A : Type u₃) [Semiring A] [Algebra k A] (e : G ≃* H) (f : MonoidAlgebra A G) :
                ((MonoidAlgebra.domCongr k A e) f).support = Finset.map (↑e).toEmbedding f.support
                @[simp]
                theorem MonoidAlgebra.domCongr_single (k : Type u₁) {G : Type u₂} {H : Type u_1} [CommSemiring k] [Monoid G] [Monoid H] (A : Type u₃) [Semiring A] [Algebra k A] (e : G ≃* H) (g : G) (a : A) :
                @[simp]
                theorem MonoidAlgebra.domCongr_refl (k : Type u₁) {G : Type u₂} [CommSemiring k] [Monoid G] (A : Type u₃) [Semiring A] [Algebra k A] :
                MonoidAlgebra.domCongr k A (MulEquiv.refl G) = AlgEquiv.refl
                @[simp]
                theorem MonoidAlgebra.domCongr_symm (k : Type u₁) {G : Type u₂} {H : Type u_1} [CommSemiring k] [Monoid G] [Monoid H] (A : Type u₃) [Semiring A] [Algebra k A] (e : G ≃* H) :
                def MonoidAlgebra.GroupSMul.linearMap (k : Type u₁) {G : Type u₂} [Monoid G] [CommSemiring k] (V : Type u₃) [AddCommMonoid V] [Module k V] [Module (MonoidAlgebra k G) V] [IsScalarTower k (MonoidAlgebra k G) V] (g : G) :

                When V is a k[G]-module, multiplication by a group element g is a k-linear map.

                Equations
                Instances For
                  @[simp]
                  theorem MonoidAlgebra.GroupSMul.linearMap_apply (k : Type u₁) {G : Type u₂} [Monoid G] [CommSemiring k] (V : Type u₃) [AddCommMonoid V] [Module k V] [Module (MonoidAlgebra k G) V] [IsScalarTower k (MonoidAlgebra k G) V] (g : G) (v : V) :
                  def MonoidAlgebra.equivariantOfLinearOfComm {k : Type u₁} {G : Type u₂} [Monoid G] [CommSemiring k] {V : Type u₃} {W : Type u₄} [AddCommMonoid V] [Module k V] [Module (MonoidAlgebra k G) V] [IsScalarTower k (MonoidAlgebra k G) V] [AddCommMonoid W] [Module k W] [Module (MonoidAlgebra k G) W] [IsScalarTower k (MonoidAlgebra k G) W] (f : V →ₗ[k] W) (h : ∀ (g : G) (v : V), f (MonoidAlgebra.single g 1 v) = MonoidAlgebra.single g 1 f v) :

                  Build a k[G]-linear map from a k-linear map and evidence that it is G-equivariant.

                  Equations
                  Instances For
                    @[simp]
                    theorem MonoidAlgebra.equivariantOfLinearOfComm_apply {k : Type u₁} {G : Type u₂} [Monoid G] [CommSemiring k] {V : Type u₃} {W : Type u₄} [AddCommMonoid V] [Module k V] [Module (MonoidAlgebra k G) V] [IsScalarTower k (MonoidAlgebra k G) V] [AddCommMonoid W] [Module k W] [Module (MonoidAlgebra k G) W] [IsScalarTower k (MonoidAlgebra k G) W] (f : V →ₗ[k] W) (h : ∀ (g : G) (v : V), f (MonoidAlgebra.single g 1 v) = MonoidAlgebra.single g 1 f v) (v : V) :

                    Non-unital, non-associative algebra structure #

                    theorem AddMonoidAlgebra.nonUnitalAlgHom_ext (k : Type u₁) {G : Type u₂} [Semiring k] [Add G] {A : Type u₃} [NonUnitalNonAssocSemiring A] [DistribMulAction k A] {φ₁ φ₂ : AddMonoidAlgebra k G →ₙₐ[k] A} (h : ∀ (x : G), φ₁ (AddMonoidAlgebra.single x 1) = φ₂ (AddMonoidAlgebra.single x 1)) :
                    φ₁ = φ₂

                    A non_unital k-algebra homomorphism from k[G] is uniquely defined by its values on the functions single a 1.

                    theorem AddMonoidAlgebra.nonUnitalAlgHom_ext' (k : Type u₁) {G : Type u₂} [Semiring k] [Add G] {A : Type u₃} [NonUnitalNonAssocSemiring A] [DistribMulAction k A] {φ₁ φ₂ : AddMonoidAlgebra k G →ₙₐ[k] A} (h : φ₁.toMulHom.comp (AddMonoidAlgebra.ofMagma k G) = φ₂.toMulHom.comp (AddMonoidAlgebra.ofMagma k G)) :
                    φ₁ = φ₂

                    See note [partially-applied ext lemmas].

                    The functor G ↦ k[G], from the category of magmas to the category of non-unital, non-associative algebras over k is adjoint to the forgetful functor in the other direction.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[simp]
                      theorem AddMonoidAlgebra.liftMagma_apply_apply (k : Type u₁) {G : Type u₂} [Semiring k] [Add G] {A : Type u₃} [NonUnitalNonAssocSemiring A] [Module k A] [IsScalarTower k A A] [SMulCommClass k A A] (f : Multiplicative G →ₙ* A) (a : AddMonoidAlgebra k G) :
                      ((AddMonoidAlgebra.liftMagma k) f) a = Finsupp.sum a fun (m : G) (t : k) => t f (Multiplicative.ofAdd m)
                      @[simp]
                      theorem AddMonoidAlgebra.liftMagma_symm_apply (k : Type u₁) {G : Type u₂} [Semiring k] [Add G] {A : Type u₃} [NonUnitalNonAssocSemiring A] [Module k A] [IsScalarTower k A A] [SMulCommClass k A A] (F : AddMonoidAlgebra k G →ₙₐ[k] A) :
                      (AddMonoidAlgebra.liftMagma k).symm F = F.toMulHom.comp (AddMonoidAlgebra.ofMagma k G)

                      Algebra structure #

                      instance AddMonoidAlgebra.algebra {k : Type u₁} {G : Type u₂} {R : Type u_2} [CommSemiring R] [Semiring k] [Algebra R k] [AddMonoid G] :

                      The instance Algebra R k[G] whenever we have Algebra R k.

                      In particular this provides the instance Algebra k k[G].

                      Equations
                      def AddMonoidAlgebra.singleZeroAlgHom {k : Type u₁} {G : Type u₂} {R : Type u_2} [CommSemiring R] [Semiring k] [Algebra R k] [AddMonoid G] :

                      Finsupp.single 0 as an AlgHom

                      Equations
                      • AddMonoidAlgebra.singleZeroAlgHom = { toRingHom := AddMonoidAlgebra.singleZeroRingHom, commutes' := }
                      Instances For
                        @[simp]
                        theorem AddMonoidAlgebra.singleZeroAlgHom_apply {k : Type u₁} {G : Type u₂} {R : Type u_2} [CommSemiring R] [Semiring k] [Algebra R k] [AddMonoid G] (a✝ : k) :
                        AddMonoidAlgebra.singleZeroAlgHom a✝ = Finsupp.single 0 a✝
                        @[simp]
                        theorem AddMonoidAlgebra.coe_algebraMap {k : Type u₁} {G : Type u₂} {R : Type u_2} [CommSemiring R] [Semiring k] [Algebra R k] [AddMonoid G] :
                        def AddMonoidAlgebra.liftNCAlgHom {k : Type u₁} {G : Type u₂} [CommSemiring k] [AddMonoid G] {A : Type u₃} [Semiring A] [Algebra k A] {B : Type u_3} [Semiring B] [Algebra k B] (f : A →ₐ[k] B) (g : Multiplicative G →* B) (h_comm : ∀ (x : A) (y : Multiplicative G), Commute (f x) (g y)) :

                        liftNCRingHom as an AlgHom, for when f is an AlgHom

                        Equations
                        Instances For
                          theorem AddMonoidAlgebra.algHom_ext {k : Type u₁} {G : Type u₂} [CommSemiring k] [AddMonoid G] {A : Type u₃} [Semiring A] [Algebra k A] ⦃φ₁ φ₂ : AddMonoidAlgebra k G →ₐ[k] A (h : ∀ (x : G), φ₁ (AddMonoidAlgebra.single x 1) = φ₂ (AddMonoidAlgebra.single x 1)) :
                          φ₁ = φ₂

                          A k-algebra homomorphism from k[G] is uniquely defined by its values on the functions single a 1.

                          theorem AddMonoidAlgebra.algHom_ext' {k : Type u₁} {G : Type u₂} [CommSemiring k] [AddMonoid G] {A : Type u₃} [Semiring A] [Algebra k A] ⦃φ₁ φ₂ : AddMonoidAlgebra k G →ₐ[k] A (h : (↑φ₁).comp (AddMonoidAlgebra.of k G) = (↑φ₂).comp (AddMonoidAlgebra.of k G)) :
                          φ₁ = φ₂

                          See note [partially-applied ext lemmas].

                          def AddMonoidAlgebra.lift (k : Type u₁) (G : Type u₂) [CommSemiring k] [AddMonoid G] (A : Type u₃) [Semiring A] [Algebra k A] :

                          Any monoid homomorphism G →* A can be lifted to an algebra homomorphism k[G] →ₐ[k] A.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            theorem AddMonoidAlgebra.lift_apply' {k : Type u₁} {G : Type u₂} [CommSemiring k] [AddMonoid G] {A : Type u₃} [Semiring A] [Algebra k A] (F : Multiplicative G →* A) (f : MonoidAlgebra k G) :
                            ((AddMonoidAlgebra.lift k G A) F) f = Finsupp.sum f fun (a : G) (b : k) => (algebraMap k A) b * F (Multiplicative.ofAdd a)
                            theorem AddMonoidAlgebra.lift_apply {k : Type u₁} {G : Type u₂} [CommSemiring k] [AddMonoid G] {A : Type u₃} [Semiring A] [Algebra k A] (F : Multiplicative G →* A) (f : MonoidAlgebra k G) :
                            ((AddMonoidAlgebra.lift k G A) F) f = Finsupp.sum f fun (a : G) (b : k) => b F (Multiplicative.ofAdd a)
                            theorem AddMonoidAlgebra.lift_def {k : Type u₁} {G : Type u₂} [CommSemiring k] [AddMonoid G] {A : Type u₃} [Semiring A] [Algebra k A] (F : Multiplicative G →* A) :
                            ((AddMonoidAlgebra.lift k G A) F) = (AddMonoidAlgebra.liftNC (algebraMap k A) F)
                            @[simp]
                            theorem AddMonoidAlgebra.lift_symm_apply {k : Type u₁} {G : Type u₂} [CommSemiring k] [AddMonoid G] {A : Type u₃} [Semiring A] [Algebra k A] (F : AddMonoidAlgebra k G →ₐ[k] A) (x : Multiplicative G) :
                            ((AddMonoidAlgebra.lift k G A).symm F) x = F (AddMonoidAlgebra.single (Multiplicative.toAdd x) 1)
                            theorem AddMonoidAlgebra.lift_of {k : Type u₁} {G : Type u₂} [CommSemiring k] [AddMonoid G] {A : Type u₃} [Semiring A] [Algebra k A] (F : Multiplicative G →* A) (x : Multiplicative G) :
                            ((AddMonoidAlgebra.lift k G A) F) ((AddMonoidAlgebra.of k G) x) = F x
                            @[simp]
                            theorem AddMonoidAlgebra.lift_single {k : Type u₁} {G : Type u₂} [CommSemiring k] [AddMonoid G] {A : Type u₃} [Semiring A] [Algebra k A] (F : Multiplicative G →* A) (a : G) (b : k) :
                            ((AddMonoidAlgebra.lift k G A) F) (AddMonoidAlgebra.single a b) = b F (Multiplicative.ofAdd a)
                            theorem AddMonoidAlgebra.lift_of' {k : Type u₁} {G : Type u₂} [CommSemiring k] [AddMonoid G] {A : Type u₃} [Semiring A] [Algebra k A] (F : Multiplicative G →* A) (x : G) :
                            ((AddMonoidAlgebra.lift k G A) F) (AddMonoidAlgebra.of' k G x) = F (Multiplicative.ofAdd x)
                            theorem AddMonoidAlgebra.lift_unique' {k : Type u₁} {G : Type u₂} [CommSemiring k] [AddMonoid G] {A : Type u₃} [Semiring A] [Algebra k A] (F : AddMonoidAlgebra k G →ₐ[k] A) :
                            F = (AddMonoidAlgebra.lift k G A) ((↑F).comp (AddMonoidAlgebra.of k G))
                            theorem AddMonoidAlgebra.lift_unique {k : Type u₁} {G : Type u₂} [CommSemiring k] [AddMonoid G] {A : Type u₃} [Semiring A] [Algebra k A] (F : AddMonoidAlgebra k G →ₐ[k] A) (f : MonoidAlgebra k G) :
                            F f = Finsupp.sum f fun (a : G) (b : k) => b F (AddMonoidAlgebra.single a 1)

                            Decomposition of a k-algebra homomorphism from MonoidAlgebra k G by its values on F (single a 1).

                            theorem AddMonoidAlgebra.algHom_ext_iff {k : Type u₁} {G : Type u₂} [CommSemiring k] [AddMonoid G] {A : Type u₃} [Semiring A] [Algebra k A] {φ₁ φ₂ : AddMonoidAlgebra k G →ₐ[k] A} :
                            (∀ (x : G), φ₁ (Finsupp.single x 1) = φ₂ (Finsupp.single x 1)) φ₁ = φ₂
                            theorem AddMonoidAlgebra.mapDomain_algebraMap {k : Type u₁} {G : Type u₂} (A : Type u_3) {H : Type u_4} {F : Type u_5} [CommSemiring k] [Semiring A] [Algebra k A] [AddMonoid G] [AddMonoid H] [FunLike F G H] [AddMonoidHomClass F G H] (f : F) (r : k) :
                            def AddMonoidAlgebra.mapDomainNonUnitalAlgHom (k : Type u_3) (A : Type u_4) [CommSemiring k] [Semiring A] [Algebra k A] {G : Type u_5} {H : Type u_6} {F : Type u_7} [Add G] [Add H] [FunLike F G H] [AddHomClass F G H] (f : F) :

                            If f : G → H is a homomorphism between two additive magmas, then Finsupp.mapDomain f is a non-unital algebra homomorphism between their additive magma algebras.

                            Equations
                            Instances For
                              @[simp]
                              theorem AddMonoidAlgebra.mapDomainNonUnitalAlgHom_apply (k : Type u_3) (A : Type u_4) [CommSemiring k] [Semiring A] [Algebra k A] {G : Type u_5} {H : Type u_6} {F : Type u_7} [Add G] [Add H] [FunLike F G H] [AddHomClass F G H] (f : F) (a✝ : G →₀ A) :
                              def AddMonoidAlgebra.mapDomainAlgHom {G : Type u₂} (k : Type u_3) (A : Type u_4) [CommSemiring k] [Semiring A] [Algebra k A] [AddMonoid G] {H : Type u_5} {F : Type u_6} [AddMonoid H] [FunLike F G H] [AddMonoidHomClass F G H] (f : F) :

                              If f : G → H is an additive homomorphism between two additive monoids, then Finsupp.mapDomain f is an algebra homomorphism between their add monoid algebras.

                              Equations
                              Instances For
                                @[simp]
                                theorem AddMonoidAlgebra.mapDomainAlgHom_apply {G : Type u₂} (k : Type u_3) (A : Type u_4) [CommSemiring k] [Semiring A] [Algebra k A] [AddMonoid G] {H : Type u_5} {F : Type u_6} [AddMonoid H] [FunLike F G H] [AddMonoidHomClass F G H] (f : F) (a✝ : G →₀ A) :
                                @[simp]
                                theorem AddMonoidAlgebra.mapDomainAlgHom_comp (k : Type u_3) (A : Type u_4) {G₁ : Type u_5} {G₂ : Type u_6} {G₃ : Type u_7} [CommSemiring k] [Semiring A] [Algebra k A] [AddMonoid G₁] [AddMonoid G₂] [AddMonoid G₃] (f : G₁ →+ G₂) (g : G₂ →+ G₃) :
                                def AddMonoidAlgebra.domCongr (k : Type u₁) {G : Type u₂} {H : Type u_1} (A : Type u_3) [CommSemiring k] [AddMonoid G] [AddMonoid H] [Semiring A] [Algebra k A] (e : G ≃+ H) :

                                If e : G ≃* H is a multiplicative equivalence between two monoids, then AddMonoidAlgebra.domCongr e is an algebra equivalence between their monoid algebras.

                                Equations
                                Instances For
                                  theorem AddMonoidAlgebra.domCongr_toAlgHom (k : Type u₁) {G : Type u₂} {H : Type u_1} (A : Type u_3) [CommSemiring k] [AddMonoid G] [AddMonoid H] [Semiring A] [Algebra k A] (e : G ≃+ H) :
                                  @[simp]
                                  theorem AddMonoidAlgebra.domCongr_apply (k : Type u₁) {G : Type u₂} {H : Type u_1} (A : Type u_3) [CommSemiring k] [AddMonoid G] [AddMonoid H] [Semiring A] [Algebra k A] (e : G ≃+ H) (f : MonoidAlgebra A G) (h : H) :
                                  ((AddMonoidAlgebra.domCongr k A e) f) h = f (e.symm h)
                                  @[simp]
                                  theorem AddMonoidAlgebra.domCongr_support (k : Type u₁) {G : Type u₂} {H : Type u_1} (A : Type u_3) [CommSemiring k] [AddMonoid G] [AddMonoid H] [Semiring A] [Algebra k A] (e : G ≃+ H) (f : MonoidAlgebra A G) :
                                  ((AddMonoidAlgebra.domCongr k A e) f).support = Finset.map (↑e).toEmbedding f.support
                                  @[simp]
                                  theorem AddMonoidAlgebra.domCongr_single (k : Type u₁) {G : Type u₂} {H : Type u_1} (A : Type u_3) [CommSemiring k] [AddMonoid G] [AddMonoid H] [Semiring A] [Algebra k A] (e : G ≃+ H) (g : G) (a : A) :
                                  @[simp]
                                  theorem AddMonoidAlgebra.domCongr_refl (k : Type u₁) {G : Type u₂} (A : Type u_3) [CommSemiring k] [AddMonoid G] [Semiring A] [Algebra k A] :
                                  @[simp]
                                  theorem AddMonoidAlgebra.domCongr_symm (k : Type u₁) {G : Type u₂} {H : Type u_1} (A : Type u_3) [CommSemiring k] [AddMonoid G] [AddMonoid H] [Semiring A] [Algebra k A] (e : G ≃+ H) :

                                  The algebra equivalence between AddMonoidAlgebra and MonoidAlgebra in terms of Multiplicative.

                                  Equations
                                  Instances For

                                    The algebra equivalence between MonoidAlgebra and AddMonoidAlgebra in terms of Additive.

                                    Equations
                                    Instances For