Documentation

Mathlib.RingTheory.WittVector.Basic

Witt vectors #

This file verifies that the ring operations on WittVector p R satisfy the axioms of a commutative ring.

Main definitions #

Notation #

We use notation 𝕎 R, entered \bbW, for the Witt vectors over R.

Implementation details #

As we prove that the ghost components respect the ring operations, we face a number of repetitive proofs. To avoid duplicating code we factor these proofs into a custom tactic, only slightly more powerful than a tactic macro. This tactic is not particularly useful outside of its applications in this file.

References #

def WittVector.mapFun {p : Nat} {α : Type u_3} {β : Type u_4} (f : αβ) :
WittVector p αWittVector p β

f : α → β induces a map from 𝕎 α to 𝕎 β by applying f componentwise. If f is a ring homomorphism, then so is f, see WittVector.map f.

Equations
Instances For
    theorem WittVector.mapFun.injective {p : Nat} {α : Type u_3} {β : Type u_4} (f : αβ) (hf : Function.Injective f) :
    theorem WittVector.mapFun.surjective {p : Nat} {α : Type u_3} {β : Type u_4} (f : αβ) (hf : Function.Surjective f) :

    Auxiliary tactic for showing that mapFun respects the ring operations.

    Equations
    Instances For
      theorem WittVector.mapFun.zero {p : Nat} {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Fact (Nat.Prime p)] (f : RingHom R S) :
      theorem WittVector.mapFun.one {p : Nat} {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Fact (Nat.Prime p)] (f : RingHom R S) :
      theorem WittVector.mapFun.add {p : Nat} {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Fact (Nat.Prime p)] (f : RingHom R S) (x y : WittVector p R) :
      theorem WittVector.mapFun.sub {p : Nat} {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Fact (Nat.Prime p)] (f : RingHom R S) (x y : WittVector p R) :
      theorem WittVector.mapFun.mul {p : Nat} {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Fact (Nat.Prime p)] (f : RingHom R S) (x y : WittVector p R) :
      theorem WittVector.mapFun.neg {p : Nat} {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Fact (Nat.Prime p)] (f : RingHom R S) (x : WittVector p R) :
      theorem WittVector.mapFun.nsmul {p : Nat} {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Fact (Nat.Prime p)] (f : RingHom R S) (n : Nat) (x : WittVector p R) :
      theorem WittVector.mapFun.zsmul {p : Nat} {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Fact (Nat.Prime p)] (f : RingHom R S) (z : Int) (x : WittVector p R) :
      theorem WittVector.mapFun.pow {p : Nat} {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Fact (Nat.Prime p)] (f : RingHom R S) (x : WittVector p R) (n : Nat) :
      theorem WittVector.mapFun.natCast {p : Nat} {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Fact (Nat.Prime p)] (f : RingHom R S) (n : Nat) :
      theorem WittVector.mapFun.intCast {p : Nat} {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Fact (Nat.Prime p)] (f : RingHom R S) (n : Int) :

      An auxiliary tactic for proving that ghostFun respects the ring operations.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem WittVector.matrix_vecEmpty_coeff {p : Nat} {R : Type u_5} (i : Fin 0) (j : Nat) :

        The commutative ring structure on 𝕎 R.

        Equations
        Instances For
          noncomputable def WittVector.map {p : Nat} {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Fact (Nat.Prime p)] (f : RingHom R S) :

          WittVector.map f is the ring homomorphism 𝕎 R →+* 𝕎 S naturally induced by a ring homomorphism f : R →+* S. It acts coefficientwise.

          Equations
          Instances For
            theorem WittVector.map_coeff {p : Nat} {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Fact (Nat.Prime p)] (f : RingHom R S) (x : WittVector p R) (n : Nat) :
            Eq ((DFunLike.coe (map f) x).coeff n) (DFunLike.coe f (x.coeff n))
            def WittVector.ghostMap {p : Nat} {R : Type u_1} [CommRing R] [Fact (Nat.Prime p)] :
            RingHom (WittVector p R) (NatR)

            WittVector.ghostMap is a ring homomorphism that maps each Witt vector to the sequence of its ghost components.

            Equations
            Instances For
              def WittVector.ghostComponent {p : Nat} {R : Type u_1} [CommRing R] [Fact (Nat.Prime p)] (n : Nat) :

              Evaluates the nth Witt polynomial on the first n coefficients of x, producing a value in R.

              Equations
              Instances For
                def WittVector.ghostEquiv (p : Nat) (R : Type u_1) [CommRing R] [Fact (Nat.Prime p)] [Invertible p.cast] :
                RingEquiv (WittVector p R) (NatR)

                WittVector.ghostMap is a ring isomorphism when p is invertible in R.

                Equations
                Instances For
                  noncomputable def WittVector.constantCoeff {p : Nat} {R : Type u_1} [CommRing R] [Fact (Nat.Prime p)] :

                  WittVector.coeff x 0 as a RingHom

                  Equations
                  Instances For