Documentation

Mathlib.Topology.Category.CompHausLike.SigmaComparison

The sigma-comparison map #

This file defines the map CompHausLike.sigmaComparison associated to a presheaf X on CompHausLike P, and a finite family S₁,...,Sₙ of spaces in CompHausLike P, where P is stable under taking finite disjoint unions.

The map sigmaComparison is the canonical map X(S₁ ⊔ ... ⊔ Sₙ) ⟶ X(S₁) × ... × X(Sₙ) induced by the inclusion maps Sᵢ ⟶ S₁ ⊔ ... ⊔ Sₙ, and it is an isomorphism when X preserves finite products.

instance CompHausLike.instHasPropSigma {P : TopCatProp} [HasExplicitFiniteCoproducts P] {α : Type u} [Finite α] (σ : αType u) [(a : α) → TopologicalSpace (σ a)] [∀ (a : α), CompactSpace (σ a)] [∀ (a : α), T2Space (σ a)] [∀ (a : α), HasProp P (σ a)] :
HasProp P ((a : α) × σ a)
def CompHausLike.sigmaComparison {P : TopCatProp} [HasExplicitFiniteCoproducts P] (X : CategoryTheory.Functor (CompHausLike P)ᵒᵖ (Type (max u w))) {α : Type u} [Finite α] (σ : αType u) [(a : α) → TopologicalSpace (σ a)] [∀ (a : α), CompactSpace (σ a)] [∀ (a : α), T2Space (σ a)] [∀ (a : α), HasProp P (σ a)] :
X.obj (Opposite.op (of P ((a : α) × σ a))) (a : α) → X.obj (Opposite.op (of P (σ a)))

The comparison map from the value of a condensed set on a finite coproduct to the product of the values on the components.

Equations
Instances For
    instance CompHausLike.isIsoSigmaComparison {P : TopCatProp} [HasExplicitFiniteCoproducts P] (X : CategoryTheory.Functor (CompHausLike P)ᵒᵖ (Type (max u w))) [CategoryTheory.Limits.PreservesFiniteProducts X] {α : Type u} [Finite α] (σ : αType u) [(a : α) → TopologicalSpace (σ a)] [∀ (a : α), CompactSpace (σ a)] [∀ (a : α), T2Space (σ a)] [∀ (a : α), HasProp P (σ a)] :