The sigma-comparison map #
This file defines the map CompHausLike.sigmaComparison
associated to a presheaf X
on
CompHausLike P
, and a finite family S₁,...,Sₙ
of spaces in CompHausLike P
, where P
is
stable under taking finite disjoint unions.
The map sigmaComparison
is the canonical map X(S₁ ⊔ ... ⊔ Sₙ) ⟶ X(S₁) × ... × X(Sₙ)
induced by
the inclusion maps Sᵢ ⟶ S₁ ⊔ ... ⊔ Sₙ
, and it is an isomorphism when X
preserves finite
products.
instance
CompHausLike.instHasPropSigma
{P : TopCat → Prop}
[CompHausLike.HasExplicitFiniteCoproducts P]
{α : Type u}
[Finite α]
(σ : α → Type u)
[(a : α) → TopologicalSpace (σ a)]
[∀ (a : α), CompactSpace (σ a)]
[∀ (a : α), T2Space (σ a)]
[∀ (a : α), CompHausLike.HasProp P (σ a)]
:
CompHausLike.HasProp P ((a : α) × σ a)
def
CompHausLike.sigmaComparison
{P : TopCat → Prop}
[CompHausLike.HasExplicitFiniteCoproducts P]
(X : CategoryTheory.Functor (CompHausLike P)ᵒᵖ (Type (max u w)))
{α : Type u}
[Finite α]
(σ : α → Type u)
[(a : α) → TopologicalSpace (σ a)]
[∀ (a : α), CompactSpace (σ a)]
[∀ (a : α), T2Space (σ a)]
[∀ (a : α), CompHausLike.HasProp P (σ a)]
:
X.obj (Opposite.op (CompHausLike.of P ((a : α) × σ a))) ⟶ (a : α) → X.obj (Opposite.op (CompHausLike.of P (σ a)))
The comparison map from the value of a condensed set on a finite coproduct to the product of the values on the components.
Equations
- CompHausLike.sigmaComparison X σ x a = X.map (Opposite.op { toFun := Sigma.mk a, continuous_toFun := ⋯ }) x
Instances For
theorem
CompHausLike.sigmaComparison_eq_comp_isos
{P : TopCat → Prop}
[CompHausLike.HasExplicitFiniteCoproducts P]
(X : CategoryTheory.Functor (CompHausLike P)ᵒᵖ (Type (max u w)))
[CategoryTheory.Limits.PreservesFiniteProducts X]
{α : Type u}
[Finite α]
(σ : α → Type u)
[(a : α) → TopologicalSpace (σ a)]
[∀ (a : α), CompactSpace (σ a)]
[∀ (a : α), T2Space (σ a)]
[∀ (a : α), CompHausLike.HasProp P (σ a)]
:
CompHausLike.sigmaComparison X σ = CategoryTheory.CategoryStruct.comp
(X.mapIso
(CategoryTheory.Limits.opCoproductIsoProduct'
(CompHausLike.finiteCoproduct.isColimit fun (a : α) => CompHausLike.of P (σ a))
(CategoryTheory.Limits.productIsProduct fun (x : α) => Opposite.op (CompHausLike.of P (σ x))))).hom
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.PreservesProduct.iso X fun (a : α) => Opposite.op (CompHausLike.of P (σ a))).hom
(CategoryTheory.Limits.Types.productIso fun (a : α) => X.obj (Opposite.op (CompHausLike.of P (σ a)))).hom)
instance
CompHausLike.isIsoSigmaComparison
{P : TopCat → Prop}
[CompHausLike.HasExplicitFiniteCoproducts P]
(X : CategoryTheory.Functor (CompHausLike P)ᵒᵖ (Type (max u w)))
[CategoryTheory.Limits.PreservesFiniteProducts X]
{α : Type u}
[Finite α]
(σ : α → Type u)
[(a : α) → TopologicalSpace (σ a)]
[∀ (a : α), CompactSpace (σ a)]
[∀ (a : α), T2Space (σ a)]
[∀ (a : α), CompHausLike.HasProp P (σ a)]
: