Effective epimorphisms in Profinite
#
This file proves that EffectiveEpi
, Epi
and Surjective
are all equivalent in Profinite
.
As a consequence we deduce from the material in
Mathlib.Topology.Category.CompHausLike.EffectiveEpi
that Profinite
is Preregular
and Precoherent
.
We also prove that for a finite family of morphisms in Profinite
with fixed
target, the conditions jointly surjective, jointly epimorphic and effective epimorphic are all
equivalent.
theorem
Profinite.effectiveEpi_tfae
{B X : Profinite}
(π : X ⟶ B)
:
[CategoryTheory.EffectiveEpi π, CategoryTheory.Epi π, Function.Surjective ⇑π].TFAE
instance
Profinite.instPreservesEffectiveEpisCompHausProfiniteToCompHaus :
profiniteToCompHaus.PreservesEffectiveEpis
instance
Profinite.instReflectsEffectiveEpisCompHausProfiniteToCompHaus :
profiniteToCompHaus.ReflectsEffectiveEpis
noncomputable def
Profinite.profiniteToCompHausEffectivePresentation
(X : CompHaus)
:
profiniteToCompHaus.EffectivePresentation X
An effective presentation of an X : Profinite
with respect to the inclusion functor from Stonean
Equations
- Profinite.profiniteToCompHausEffectivePresentation X = { p := Stonean.toProfinite.obj X.presentation, f := CompHaus.presentation.π X, effectiveEpi := ⋯ }
Instances For
instance
Profinite.instEffectivelyEnoughCompHausProfiniteToCompHaus :
profiniteToCompHaus.EffectivelyEnough
Equations
theorem
Profinite.effectiveEpiFamily_tfae
{α : Type}
[Finite α]
{B : Profinite}
(X : α → Profinite)
(π : (a : α) → X a ⟶ B)
:
[CategoryTheory.EffectiveEpiFamily X π, CategoryTheory.Epi (CategoryTheory.Limits.Sigma.desc π),
∀ (b : ↑B.toTop), ∃ (a : α) (x : ↑(X a).toTop), (π a) x = b].TFAE