Documentation

Mathlib.Topology.Category.Profinite.Product

Compact subsets of products as limits in Profinite #

This file exhibits a compact subset C of a product (i : ι) → X i of totally disconnected Hausdorff spaces as a cofiltered limit in Profinite indexed by Finset ι.

Main definitions #

Main results #

def Profinite.IndexFunctor.obj {ι : Type u} {X : ιType} [(i : ι) → TopologicalSpace (X i)] (C : Set ((i : ι) → X i)) (J : ιProp) :
Set ((i : { i : ι // J i }) → X i)

The object part of the functor indexFunctor : (Finset ι)ᵒᵖ ⥤ Profinite.

Equations
Instances For
    def Profinite.IndexFunctor.π_app {ι : Type u} {X : ιType} [(i : ι) → TopologicalSpace (X i)] (C : Set ((i : ι) → X i)) (J : ιProp) :
    C(C, (obj C J))

    The projection maps in the limit cone indexCone.

    Equations
    Instances For
      def Profinite.IndexFunctor.map {ι : Type u} {X : ιType} [(i : ι) → TopologicalSpace (X i)] (C : Set ((i : ι) → X i)) {J K : ιProp} (h : ∀ (i : ι), J iK i) :
      C((obj C K), (obj C J))

      The morphism part of the functor indexFunctor : (Finset ι)ᵒᵖ ⥤ Profinite.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem Profinite.IndexFunctor.surjective_π_app {ι : Type u} {X : ιType} [(i : ι) → TopologicalSpace (X i)] (C : Set ((i : ι) → X i)) {J : ιProp} :
        theorem Profinite.IndexFunctor.map_comp_π_app {ι : Type u} {X : ιType} [(i : ι) → TopologicalSpace (X i)] (C : Set ((i : ι) → X i)) {J K : ιProp} (h : ∀ (i : ι), J iK i) :
        (map C h) (π_app C K) = (π_app C J)
        theorem Profinite.IndexFunctor.eq_of_forall_π_app_eq {ι : Type u} {X : ιType} [(i : ι) → TopologicalSpace (X i)] {C : Set ((i : ι) → X i)} (a b : C) (h : ∀ (J : Finset ι), (π_app C fun (x : ι) => x J) a = (π_app C fun (x : ι) => x J) b) :
        a = b
        noncomputable def Profinite.indexFunctor {ι : Type u} {X : ιType} [(i : ι) → TopologicalSpace (X i)] {C : Set ((i : ι) → X i)} [∀ (i : ι), T2Space (X i)] [∀ (i : ι), TotallyDisconnectedSpace (X i)] (hC : IsCompact C) :

        The functor from the poset of finsets of ι to Profinite, indexing the limit.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          noncomputable def Profinite.indexCone {ι : Type u} {X : ιType} [(i : ι) → TopologicalSpace (X i)] {C : Set ((i : ι) → X i)} [∀ (i : ι), T2Space (X i)] [∀ (i : ι), TotallyDisconnectedSpace (X i)] (hC : IsCompact C) :

          The limit cone on indexFunctor

          Equations
          Instances For
            instance Profinite.isIso_indexCone_lift {ι : Type u} {X : ιType} [(i : ι) → TopologicalSpace (X i)] {C : Set ((i : ι) → X i)} [∀ (i : ι), T2Space (X i)] [∀ (i : ι), TotallyDisconnectedSpace (X i)] (hC : IsCompact C) :
            noncomputable def Profinite.isoindexConeLift {ι : Type u} {X : ιType} [(i : ι) → TopologicalSpace (X i)] {C : Set ((i : ι) → X i)} [∀ (i : ι), T2Space (X i)] [∀ (i : ι), TotallyDisconnectedSpace (X i)] (hC : IsCompact C) :
            of C (limitCone (indexFunctor hC)).pt

            The canonical map from C to the explicit limit as an isomorphism.

            Equations
            Instances For
              noncomputable def Profinite.asLimitindexConeIso {ι : Type u} {X : ιType} [(i : ι) → TopologicalSpace (X i)] {C : Set ((i : ι) → X i)} [∀ (i : ι), T2Space (X i)] [∀ (i : ι), TotallyDisconnectedSpace (X i)] (hC : IsCompact C) :

              The isomorphism of cones induced by isoindexConeLift.

              Equations
              Instances For
                noncomputable def Profinite.indexCone_isLimit {ι : Type u} {X : ιType} [(i : ι) → TopologicalSpace (X i)] {C : Set ((i : ι) → X i)} [∀ (i : ι), T2Space (X i)] [∀ (i : ι), TotallyDisconnectedSpace (X i)] (hC : IsCompact C) :

                indexCone is a limit cone.

                Equations
                Instances For