Yoneda presheaves on topologically concrete categories #
This file develops some API for "topologically concrete" categories, defining universe polymorphic "Yoneda presheaves" on such categories.
def
ContinuousMap.yonedaPresheaf
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor C TopCat)
(Y : Type w')
[TopologicalSpace Y]
:
CategoryTheory.Functor Cᵒᵖ (Type (max w w'))
A universe polymorphic "Yoneda presheaf" on C
given by continuous maps into a topoological space
Y
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
ContinuousMap.yonedaPresheaf_map
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor C TopCat)
(Y : Type w')
[TopologicalSpace Y]
{X✝ Y✝ : Cᵒᵖ}
(f : X✝ ⟶ Y✝)
(g : C(↑(F.obj (Opposite.unop X✝)), Y))
:
(yonedaPresheaf F Y).map f g = g.comp (F.map f.unop)
@[simp]
theorem
ContinuousMap.yonedaPresheaf_obj
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor C TopCat)
(Y : Type w')
[TopologicalSpace Y]
(X : Cᵒᵖ)
:
(yonedaPresheaf F Y).obj X = C(↑(F.obj (Opposite.unop X)), Y)
def
ContinuousMap.yonedaPresheaf'
(Y : Type w')
[TopologicalSpace Y]
:
CategoryTheory.Functor TopCatᵒᵖ (Type (max w w'))
A universe polymorphic Yoneda presheaf on TopCat
given by continuous maps into a topoological
space Y
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
ContinuousMap.yonedaPresheaf'_map
(Y : Type w')
[TopologicalSpace Y]
{X✝ Y✝ : TopCatᵒᵖ}
(f : X✝ ⟶ Y✝)
(g : C(↑(Opposite.unop X✝), Y))
:
(yonedaPresheaf' Y).map f g = g.comp f.unop
@[simp]
theorem
ContinuousMap.yonedaPresheaf'_obj
(Y : Type w')
[TopologicalSpace Y]
(X : TopCatᵒᵖ)
:
(yonedaPresheaf' Y).obj X = C(↑(Opposite.unop X), Y)
theorem
ContinuousMap.comp_yonedaPresheaf'
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor C TopCat)
(Y : Type w')
[TopologicalSpace Y]
:
yonedaPresheaf F Y = F.op.comp (yonedaPresheaf' Y)
theorem
ContinuousMap.piComparison_fac
(Y : Type w')
[TopologicalSpace Y]
{α : Type}
(X : α → TopCat)
:
(CategoryTheory.Limits.piComparison (yonedaPresheaf' Y) fun (x : α) => Opposite.op (X x)) = CategoryTheory.CategoryStruct.comp
((yonedaPresheaf' Y).map
(CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.opCoproductIsoProduct X).inv
(TopCat.sigmaIsoSigma X).inv.op))
(CategoryTheory.CategoryStruct.comp (equivEquivIso (sigmaEquiv Y fun (x : α) => ↑(X x))).inv
(CategoryTheory.Limits.Types.productIso fun (i : α) => C(↑(X i), Y)).inv)
instance
ContinuousMap.instPreservesFiniteProductsOppositeTopCatYonedaPresheaf'
(Y : Type w')
[TopologicalSpace Y]
:
The universe polymorphic Yoneda presheaf on TopCat
preserves finite products.