Documentation

Mathlib.Topology.Compactification.OnePoint.ProjectiveLine

One-point compactification and projectivization #

We construct a set-theoretic equivalence between OnePoint K and the projectivization ℙ K (K × K) for an arbitrary division ring K.

TODO: Add the extension of this equivalence to a homeomorphism in the case K = ℝ, where OnePoint gets the topology of one-point compactification.

Main definitions and results #

Tags #

one-point extension, projectivization

instance instSMulCommClassMatrixFinOfNatNatProd {R : Type u_1} [Semiring R] {S : Type u_3} [DistribSMul S R] [SMulCommClass R S R] :
SMulCommClass (Matrix (Fin 2) (Fin 2) R) S (R × R)
@[simp]
theorem Matrix.fin_two_smul_prod {R : Type u_1} [Semiring R] (g : Matrix (Fin 2) (Fin 2) R) (v : R × R) :
g v = (g 0 0 * v.1 + g 0 1 * v.2, g 1 0 * v.1 + g 1 1 * v.2)
@[simp]
theorem Matrix.GeneralLinearGroup.fin_two_smul_prod {R : Type u_3} [CommRing R] (g : GL (Fin 2) R) (v : R × R) :
g v = (g 0 0 * v.1 + g 0 1 * v.2, g 1 0 * v.1 + g 1 1 * v.2)

The one-point compactification of a division ring K is equivalent to the projectivization ℙ K (K × K).

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    instance OnePoint.instGLAction {K : Type u_1} [Field K] [DecidableEq K] :
    MulAction (GL (Fin 2) K) (OnePoint K)

    For a field K, the group GL(2, K) acts on OnePoint K, via the canonical identification with the ℙ¹(K) (which is given explicitly by Möbius transformations).

    Equations
    theorem OnePoint.smul_infty_def {K : Type u_1} [Field K] [DecidableEq K] (g : GL (Fin 2) K) :
    theorem OnePoint.smul_infty_eq_ite {K : Type u_1} [Field K] [DecidableEq K] (g : GL (Fin 2) K) :
    g infty = if g 1 0 = 0 then infty else ↑(g 0 0 / g 1 0)
    theorem OnePoint.smul_infty_eq_iff {K : Type u_1} [Field K] [DecidableEq K] (g : GL (Fin 2) K) :
    g infty = infty g 1 0 = 0
    theorem OnePoint.smul_some_eq_ite {K : Type u_1} [Field K] [DecidableEq K] (g : GL (Fin 2) K) (k : K) :
    g k = if g 1 0 * k + g 1 1 = 0 then infty else ↑((g 0 0 * k + g 0 1) / (g 1 0 * k + g 1 1))