Documentation

Mathlib.Topology.EMetricSpace.Basic

Extended metric spaces #

Further results about extended metric spaces.

theorem edist_le_Ico_sum_edist {α : Type u} [PseudoEMetricSpace α] (f : Natα) {m n : Nat} (h : LE.le m n) :
LE.le (EDist.edist (f m) (f n)) ((Finset.Ico m n).sum fun (i : Nat) => EDist.edist (f i) (f (HAdd.hAdd i 1)))

The triangle (polygon) inequality for sequences of points; Finset.Ico version.

theorem edist_le_range_sum_edist {α : Type u} [PseudoEMetricSpace α] (f : Natα) (n : Nat) :
LE.le (EDist.edist (f 0) (f n)) ((Finset.range n).sum fun (i : Nat) => EDist.edist (f i) (f (HAdd.hAdd i 1)))

The triangle (polygon) inequality for sequences of points; Finset.range version.

theorem edist_le_Ico_sum_of_edist_le {α : Type u} [PseudoEMetricSpace α] {f : Natα} {m n : Nat} (hmn : LE.le m n) {d : NatENNReal} (hd : ∀ {k : Nat}, LE.le m kLT.lt k nLE.le (EDist.edist (f k) (f (HAdd.hAdd k 1))) (d k)) :
LE.le (EDist.edist (f m) (f n)) ((Finset.Ico m n).sum fun (i : Nat) => d i)

A version of edist_le_Ico_sum_edist with each intermediate distance replaced with an upper estimate.

theorem edist_le_range_sum_of_edist_le {α : Type u} [PseudoEMetricSpace α] {f : Natα} (n : Nat) {d : NatENNReal} (hd : ∀ {k : Nat}, LT.lt k nLE.le (EDist.edist (f k) (f (HAdd.hAdd k 1))) (d k)) :
LE.le (EDist.edist (f 0) (f n)) ((Finset.range n).sum fun (i : Nat) => d i)

A version of edist_le_range_sum_edist with each intermediate distance replaced with an upper estimate.

theorem EMetric.isUniformInducing_iff {α : Type u} {β : Type v} [PseudoEMetricSpace α] [PseudoEMetricSpace β] {f : αβ} :
Iff (IsUniformInducing f) (And (UniformContinuous f) (∀ (δ : ENNReal), GT.gt δ 0Exists fun (ε : ENNReal) => And (GT.gt ε 0) (∀ {a b : α}, LT.lt (EDist.edist (f a) (f b)) εLT.lt (EDist.edist a b) δ)))
@[deprecated EMetric.isUniformInducing_iff (since := "2024-10-05")]
theorem EMetric.uniformInducing_iff {α : Type u} {β : Type v} [PseudoEMetricSpace α] [PseudoEMetricSpace β] {f : αβ} :
Iff (IsUniformInducing f) (And (UniformContinuous f) (∀ (δ : ENNReal), GT.gt δ 0Exists fun (ε : ENNReal) => And (GT.gt ε 0) (∀ {a b : α}, LT.lt (EDist.edist (f a) (f b)) εLT.lt (EDist.edist a b) δ)))

Alias of EMetric.isUniformInducing_iff.

theorem EMetric.isUniformEmbedding_iff {α : Type u} {β : Type v} [PseudoEMetricSpace α] [PseudoEMetricSpace β] {f : αβ} :
Iff (IsUniformEmbedding f) (And (Function.Injective f) (And (UniformContinuous f) (∀ (δ : ENNReal), GT.gt δ 0Exists fun (ε : ENNReal) => And (GT.gt ε 0) (∀ {a b : α}, LT.lt (EDist.edist (f a) (f b)) εLT.lt (EDist.edist a b) δ))))

ε-δ characterization of uniform embeddings on pseudoemetric spaces

@[deprecated EMetric.isUniformEmbedding_iff (since := "2024-10-01")]
theorem EMetric.uniformEmbedding_iff {α : Type u} {β : Type v} [PseudoEMetricSpace α] [PseudoEMetricSpace β] {f : αβ} :
Iff (IsUniformEmbedding f) (And (Function.Injective f) (And (UniformContinuous f) (∀ (δ : ENNReal), GT.gt δ 0Exists fun (ε : ENNReal) => And (GT.gt ε 0) (∀ {a b : α}, LT.lt (EDist.edist (f a) (f b)) εLT.lt (EDist.edist a b) δ))))

Alias of EMetric.isUniformEmbedding_iff.


ε-δ characterization of uniform embeddings on pseudoemetric spaces

theorem EMetric.controlled_of_isUniformEmbedding {α : Type u} {β : Type v} [PseudoEMetricSpace α] [PseudoEMetricSpace β] {f : αβ} (h : IsUniformEmbedding f) :
And (∀ (ε : ENNReal), GT.gt ε 0Exists fun (δ : ENNReal) => And (GT.gt δ 0) (∀ {a b : α}, LT.lt (EDist.edist a b) δLT.lt (EDist.edist (f a) (f b)) ε)) (∀ (δ : ENNReal), GT.gt δ 0Exists fun (ε : ENNReal) => And (GT.gt ε 0) (∀ {a b : α}, LT.lt (EDist.edist (f a) (f b)) εLT.lt (EDist.edist a b) δ))

If a map between pseudoemetric spaces is a uniform embedding then the edistance between f x and f y is controlled in terms of the distance between x and y.

In fact, this lemma holds for a IsUniformInducing map. TODO: generalize?

@[deprecated EMetric.controlled_of_isUniformEmbedding (since := "2024-10-01")]
theorem EMetric.controlled_of_uniformEmbedding {α : Type u} {β : Type v} [PseudoEMetricSpace α] [PseudoEMetricSpace β] {f : αβ} (h : IsUniformEmbedding f) :
And (∀ (ε : ENNReal), GT.gt ε 0Exists fun (δ : ENNReal) => And (GT.gt δ 0) (∀ {a b : α}, LT.lt (EDist.edist a b) δLT.lt (EDist.edist (f a) (f b)) ε)) (∀ (δ : ENNReal), GT.gt δ 0Exists fun (ε : ENNReal) => And (GT.gt ε 0) (∀ {a b : α}, LT.lt (EDist.edist (f a) (f b)) εLT.lt (EDist.edist a b) δ))

Alias of EMetric.controlled_of_isUniformEmbedding.


If a map between pseudoemetric spaces is a uniform embedding then the edistance between f x and f y is controlled in terms of the distance between x and y.

In fact, this lemma holds for a IsUniformInducing map. TODO: generalize?

theorem EMetric.cauchy_iff {α : Type u} [PseudoEMetricSpace α] {f : Filter α} :
Iff (Cauchy f) (And (Ne f Bot.bot) (∀ (ε : ENNReal), GT.gt ε 0Exists fun (t : Set α) => And (Membership.mem f t) (∀ (x : α), Membership.mem t x∀ (y : α), Membership.mem t yLT.lt (EDist.edist x y) ε)))

ε-δ characterization of Cauchy sequences on pseudoemetric spaces

theorem EMetric.complete_of_convergent_controlled_sequences {α : Type u} [PseudoEMetricSpace α] (B : NatENNReal) (hB : ∀ (n : Nat), LT.lt 0 (B n)) (H : ∀ (u : Natα), (∀ (N n m : Nat), LE.le N nLE.le N mLT.lt (EDist.edist (u n) (u m)) (B N))Exists fun (x : α) => Filter.Tendsto u Filter.atTop (nhds x)) :

A very useful criterion to show that a space is complete is to show that all sequences which satisfy a bound of the form edist (u n) (u m) < B N for all n m ≥ N are converging. This is often applied for B N = 2^{-N}, i.e., with a very fast convergence to 0, which makes it possible to use arguments of converging series, while this is impossible to do in general for arbitrary Cauchy sequences.

theorem EMetric.complete_of_cauchySeq_tendsto {α : Type u} [PseudoEMetricSpace α] :
(∀ (u : Natα), CauchySeq uExists fun (a : α) => Filter.Tendsto u Filter.atTop (nhds a))CompleteSpace α

A sequentially complete pseudoemetric space is complete.

theorem EMetric.tendstoLocallyUniformlyOn_iff {α : Type u} {β : Type v} [PseudoEMetricSpace α] {ι : Type u_2} [TopologicalSpace β] {F : ιβα} {f : βα} {p : Filter ι} {s : Set β} :
Iff (TendstoLocallyUniformlyOn F f p s) (∀ (ε : ENNReal), GT.gt ε 0∀ (x : β), Membership.mem s xExists fun (t : Set β) => And (Membership.mem (nhdsWithin x s) t) (Filter.Eventually (fun (n : ι) => ∀ (y : β), Membership.mem t yLT.lt (EDist.edist (f y) (F n y)) ε) p))

Expressing locally uniform convergence on a set using edist.

theorem EMetric.tendstoUniformlyOn_iff {α : Type u} {β : Type v} [PseudoEMetricSpace α] {ι : Type u_2} {F : ιβα} {f : βα} {p : Filter ι} {s : Set β} :
Iff (TendstoUniformlyOn F f p s) (∀ (ε : ENNReal), GT.gt ε 0Filter.Eventually (fun (n : ι) => ∀ (x : β), Membership.mem s xLT.lt (EDist.edist (f x) (F n x)) ε) p)

Expressing uniform convergence on a set using edist.

theorem EMetric.tendstoLocallyUniformly_iff {α : Type u} {β : Type v} [PseudoEMetricSpace α] {ι : Type u_2} [TopologicalSpace β] {F : ιβα} {f : βα} {p : Filter ι} :
Iff (TendstoLocallyUniformly F f p) (∀ (ε : ENNReal), GT.gt ε 0∀ (x : β), Exists fun (t : Set β) => And (Membership.mem (nhds x) t) (Filter.Eventually (fun (n : ι) => ∀ (y : β), Membership.mem t yLT.lt (EDist.edist (f y) (F n y)) ε) p))

Expressing locally uniform convergence using edist.

theorem EMetric.tendstoUniformly_iff {α : Type u} {β : Type v} [PseudoEMetricSpace α] {ι : Type u_2} {F : ιβα} {f : βα} {p : Filter ι} :
Iff (TendstoUniformly F f p) (∀ (ε : ENNReal), GT.gt ε 0Filter.Eventually (fun (n : ι) => ∀ (x : β), LT.lt (EDist.edist (f x) (F n x)) ε) p)

Expressing uniform convergence using edist.

theorem EMetric.inseparable_iff {α : Type u} [PseudoEMetricSpace α] {x y : α} :
Iff (Inseparable x y) (Eq (EDist.edist x y) 0)
theorem Inseparable.edist_eq_zero {α : Type u} [PseudoEMetricSpace α] {x y : α} :
Inseparable x yEq (EDist.edist x y) 0

Alias of the forward direction of EMetric.inseparable_iff.

theorem EMetric.cauchySeq_iff {α : Type u} {β : Type v} [PseudoEMetricSpace α] [Nonempty β] [SemilatticeSup β] {u : βα} :
Iff (CauchySeq u) (∀ (ε : ENNReal), GT.gt ε 0Exists fun (N : β) => ∀ (m : β), LE.le N m∀ (n : β), LE.le N nLT.lt (EDist.edist (u m) (u n)) ε)

In a pseudoemetric space, Cauchy sequences are characterized by the fact that, eventually, the pseudoedistance between its elements is arbitrarily small

theorem EMetric.cauchySeq_iff' {α : Type u} {β : Type v} [PseudoEMetricSpace α] [Nonempty β] [SemilatticeSup β] {u : βα} :
Iff (CauchySeq u) (∀ (ε : ENNReal), GT.gt ε 0Exists fun (N : β) => ∀ (n : β), GE.ge n NLT.lt (EDist.edist (u n) (u N)) ε)

A variation around the emetric characterization of Cauchy sequences

theorem EMetric.cauchySeq_iff_NNReal {α : Type u} {β : Type v} [PseudoEMetricSpace α] [Nonempty β] [SemilatticeSup β] {u : βα} :
Iff (CauchySeq u) (∀ (ε : NNReal), LT.lt 0 εExists fun (N : β) => ∀ (n : β), LE.le N nLT.lt (EDist.edist (u n) (u N)) (ENNReal.ofNNReal ε))

A variation of the emetric characterization of Cauchy sequences that deals with ℝ≥0 upper bounds.

theorem EMetric.totallyBounded_iff {α : Type u} [PseudoEMetricSpace α] {s : Set α} :
Iff (TotallyBounded s) (∀ (ε : ENNReal), GT.gt ε 0Exists fun (t : Set α) => And t.Finite (HasSubset.Subset s (Set.iUnion fun (y : α) => Set.iUnion fun (h : Membership.mem t y) => ball y ε)))
theorem EMetric.totallyBounded_iff' {α : Type u} [PseudoEMetricSpace α] {s : Set α} :
Iff (TotallyBounded s) (∀ (ε : ENNReal), GT.gt ε 0Exists fun (t : Set α) => And (HasSubset.Subset t s) (And t.Finite (HasSubset.Subset s (Set.iUnion fun (y : α) => Set.iUnion fun (h : Membership.mem t y) => ball y ε))))

A compact set in a pseudo emetric space is separable, i.e., it is a subset of the closure of a countable set.

A sigma compact pseudo emetric space has second countable topology.

theorem EMetric.secondCountable_of_almost_dense_set {α : Type u} [PseudoEMetricSpace α] (hs : ∀ (ε : ENNReal), GT.gt ε 0Exists fun (t : Set α) => And t.Countable (Eq (Set.iUnion fun (x : α) => Set.iUnion fun (h : Membership.mem t x) => closedBall x ε) Set.univ)) :

An emetric space is separated

theorem EMetric.isUniformEmbedding_iff' {β : Type v} {γ : Type w} [EMetricSpace γ] [EMetricSpace β] {f : γβ} :
Iff (IsUniformEmbedding f) (And (∀ (ε : ENNReal), GT.gt ε 0Exists fun (δ : ENNReal) => And (GT.gt δ 0) (∀ {a b : γ}, LT.lt (EDist.edist a b) δLT.lt (EDist.edist (f a) (f b)) ε)) (∀ (δ : ENNReal), GT.gt δ 0Exists fun (ε : ENNReal) => And (GT.gt ε 0) (∀ {a b : γ}, LT.lt (EDist.edist (f a) (f b)) εLT.lt (EDist.edist a b) δ)))

A map between emetric spaces is a uniform embedding if and only if the edistance between f x and f y is controlled in terms of the distance between x and y and conversely.

@[deprecated EMetric.isUniformEmbedding_iff' (since := "2024-10-01")]
theorem EMetric.uniformEmbedding_iff' {β : Type v} {γ : Type w} [EMetricSpace γ] [EMetricSpace β] {f : γβ} :
Iff (IsUniformEmbedding f) (And (∀ (ε : ENNReal), GT.gt ε 0Exists fun (δ : ENNReal) => And (GT.gt δ 0) (∀ {a b : γ}, LT.lt (EDist.edist a b) δLT.lt (EDist.edist (f a) (f b)) ε)) (∀ (δ : ENNReal), GT.gt δ 0Exists fun (ε : ENNReal) => And (GT.gt ε 0) (∀ {a b : γ}, LT.lt (EDist.edist (f a) (f b)) εLT.lt (EDist.edist a b) δ)))

Alias of EMetric.isUniformEmbedding_iff'.


A map between emetric spaces is a uniform embedding if and only if the edistance between f x and f y is controlled in terms of the distance between x and y and conversely.

@[reducible, inline]

If a PseudoEMetricSpace is a T₀ space, then it is an EMetricSpace.

Equations
Instances For
    def Prod.emetricSpaceMax {β : Type v} {γ : Type w} [EMetricSpace γ] [EMetricSpace β] :

    The product of two emetric spaces, with the max distance, is an extended metric spaces. We make sure that the uniform structure thus constructed is the one corresponding to the product of uniform spaces, to avoid diamond problems.

    Equations
    Instances For
      theorem EMetric.countable_closure_of_compact {γ : Type w} [EMetricSpace γ] {s : Set γ} (hs : IsCompact s) :
      Exists fun (t : Set γ) => And (HasSubset.Subset t s) (And t.Countable (Eq s (closure t)))

      A compact set in an emetric space is separable, i.e., it is the closure of a countable set.

      Separation quotient #

      theorem SeparationQuotient.edist_mk {X : Type u_1} [PseudoEMetricSpace X] (x y : X) :
      Eq (EDist.edist (mk x) (mk y)) (EDist.edist x y)

      If a set s is separable in a (pseudo extended) metric space, then it admits a countable dense subset. This is not obvious, as the countable set whose closure covers s given by the definition of separability does not need in general to be contained in s.

      If a set s is separable, then the corresponding subtype is separable in a (pseudo extended) metric space. This is not obvious, as the countable set whose closure covers s does not need in general to be contained in s.