Gδ
sets and metrizable spaces #
Main results #
We prove that metrizable spaces are T6. We prove that the continuity set of a function from a topological space to a metrizable space is a Gδ set.
@[instance 100]
instance
instNormalSpaceOfPseudoMetrizableSpace
{X : Type u_1}
[TopologicalSpace X]
[TopologicalSpace.PseudoMetrizableSpace X]
:
@[instance 500]
instance
instPerfectlyNormalSpaceOfPseudoMetrizableSpace
{X : Type u_1}
[TopologicalSpace X]
[TopologicalSpace.PseudoMetrizableSpace X]
:
@[instance 100]
instance
instT4SpaceOfMetrizableSpace
{X : Type u_1}
[TopologicalSpace X]
[TopologicalSpace.MetrizableSpace X]
:
T4Space X
@[instance 500]
instance
instT6SpaceOfMetrizableSpace
{X : Type u_1}
[TopologicalSpace X]
[TopologicalSpace.MetrizableSpace X]
:
T6Space X
theorem
IsGδ.setOf_continuousAt
{X : Type u_1}
[TopologicalSpace X]
{Y : Type u_2}
[TopologicalSpace Y]
[TopologicalSpace.PseudoMetrizableSpace Y]
(f : X → Y)
: