Separation properties of topological spaces. #
Main definitions #
PerfectlyNormalSpace
: A perfectly normal space is a normal space such that closed sets are Gδ.T6Space
: A T₆ space is a Perfectly normal T₁ space. T₆ implies T₅.
Note that mathlib
adopts the modern convention that m ≤ n
if and only if T_m → T_n
, but
occasionally the literature swaps definitions for e.g. T₃ and regular.
@[deprecated IsGδ.compl_singleton]
Alias of IsGδ.compl_singleton
.
theorem
Set.Countable.isGδ_compl
{X : Type u_1}
[TopologicalSpace X]
{s : Set X}
[T1Space X]
(hs : s.Countable)
:
theorem
Set.Finite.isGδ_compl
{X : Type u_1}
[TopologicalSpace X]
{s : Set X}
[T1Space X]
(hs : s.Finite)
:
theorem
Set.Subsingleton.isGδ_compl
{X : Type u_1}
[TopologicalSpace X]
{s : Set X}
[T1Space X]
(hs : s.Subsingleton)
:
theorem
IsGδ.singleton
{X : Type u_1}
[TopologicalSpace X]
[FirstCountableTopology X]
[T1Space X]
(x : X)
:
IsGδ {x}
@[deprecated IsGδ.singleton]
theorem
isGδ_singleton
{X : Type u_1}
[TopologicalSpace X]
[FirstCountableTopology X]
[T1Space X]
(x : X)
:
IsGδ {x}
Alias of IsGδ.singleton
.
theorem
Set.Finite.isGδ
{X : Type u_1}
[TopologicalSpace X]
[FirstCountableTopology X]
{s : Set X}
[T1Space X]
(hs : s.Finite)
:
IsGδ s
A topological space X
is a perfectly normal space provided it is normal and
closed sets are Gδ.
Instances
theorem
Disjoint.hasSeparatingCover_closed_gdelta_right
{X : Type u_1}
[TopologicalSpace X]
{s t : Set X}
[NormalSpace X]
(st_dis : Disjoint s t)
(t_cl : IsClosed t)
(t_gd : IsGδ t)
:
Lemma that allows the easy conclusion that perfectly normal spaces are completely normal.
@[instance 100]
instance
PerfectlyNormalSpace.toCompletelyNormalSpace
{X : Type u_1}
[TopologicalSpace X]
[PerfectlyNormalSpace X]
:
Equations
- ⋯ = ⋯
A T₆ space is a perfectly normal T₁ space.
- closed_gdelta : ∀ ⦃h : Set X⦄, IsClosed h → IsGδ h