Documentation

Mathlib.Topology.MetricSpace.ProperSpace.Lemmas

Proper spaces #

This file contains some more involved results about ProperSpaces.

Main definitions and results #

theorem exists_pos_lt_subset_ball {α : Type u_1} [PseudoMetricSpace α] [ProperSpace α] {x : α} {r : } {s : Set α} (hr : 0 < r) (hs : IsClosed s) (h : s Metric.ball x r) :
r'Set.Ioo 0 r, s Metric.ball x r'

If a nonempty ball in a proper space includes a closed set s, then there exists a nonempty ball with the same center and a strictly smaller radius that includes s.

theorem exists_lt_subset_ball {α : Type u_1} [PseudoMetricSpace α] [ProperSpace α] {x : α} {r : } {s : Set α} (hs : IsClosed s) (h : s Metric.ball x r) :
r' < r, s Metric.ball x r'

If a ball in a proper space includes a closed set s, then there exists a ball with the same center and a strictly smaller radius that includes s.

theorem Metric.exists_isLocalMin_mem_ball {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [ProperSpace α] [TopologicalSpace β] [ConditionallyCompleteLinearOrder β] [OrderTopology β] {f : αβ} {a z : α} {r : } (hf : ContinuousOn f (Metric.closedBall a r)) (hz : z Metric.closedBall a r) (hf1 : z'Metric.sphere a r, f z < f z') :
zMetric.ball a r, IsLocalMin f z