Scott Topological Spaces #
A type of topological spaces whose notion of continuity is equivalent to continuity in ωCPOs.
Reference #
- https://ncatlab.org/nlab/show/Scott+topology
@[simp]
theorem
Topology.IsScott.ωscottContinuous_iff_continuous
{α : Type u_1}
[OmegaCompletePartialOrder α]
[TopologicalSpace α]
[IsScott α (Set.range fun (c : OmegaCompletePartialOrder.Chain α) => Set.range ⇑c)]
{f : α → Prop}
:
x
is an ω
-Sup of a chain c
if it is the least upper bound of the range of c
.
Instances For
theorem
Scott.isωSup_iff_isLUB
{α : Type u}
[Preorder α]
{c : OmegaCompletePartialOrder.Chain α}
{x : α}
:
The characteristic function of open sets is monotone and preserves the limits of chains.
Equations
- Scott.IsOpen α s = OmegaCompletePartialOrder.ωScottContinuous fun (x : α) => x ∈ s
Instances For
theorem
Scott.isOpen_sUnion
(α : Type u)
[OmegaCompletePartialOrder α]
(s : Set (Set α))
(hs : ∀ t ∈ s, IsOpen α t)
:
theorem
Scott.IsOpen.isUpperSet
(α : Type u)
[OmegaCompletePartialOrder α]
{s : Set α}
(hs : IsOpen α s)
:
Equations
- Scott.topologicalSpace α = { IsOpen := Scott.IsOpen α, isOpen_univ := ⋯, isOpen_inter := ⋯, isOpen_sUnion := ⋯ }
theorem
isOpen_iff_ωScottContinuous_mem
{α : Type u_1}
[OmegaCompletePartialOrder α]
{s : Set (Scott α)}
:
IsOpen s ↔ OmegaCompletePartialOrder.ωScottContinuous fun (x : Scott α) => x ∈ s
theorem
scott_eq_Scott
{α : Type u_1}
[OmegaCompletePartialOrder α]
:
Topology.scott α (Set.range fun (c : OmegaCompletePartialOrder.Chain α) => Set.range ⇑c) = Scott.topologicalSpace α
theorem
isωSup_ωSup
{α : Type u_1}
[OmegaCompletePartialOrder α]
(c : OmegaCompletePartialOrder.Chain α)
:
theorem
scottContinuous_of_continuous
{α : Type u_1}
{β : Type u_2}
[OmegaCompletePartialOrder α]
[OmegaCompletePartialOrder β]
(f : Scott α → Scott β)
(hf : Continuous f)
:
theorem
continuous_of_scottContinuous
{α : Type u_1}
{β : Type u_2}
[OmegaCompletePartialOrder α]
[OmegaCompletePartialOrder β]
(f : Scott α → Scott β)
(hf : OmegaCompletePartialOrder.ωScottContinuous f)
: