Documentation

Mathlib.Topology.OmegaCompletePartialOrder

Scott Topological Spaces #

A type of topological spaces whose notion of continuity is equivalent to continuity in ωCPOs.

Reference #

def Scott.IsωSup {α : Type u} [Preorder α] (c : OmegaCompletePartialOrder.Chain α) (x : α) :

x is an ω-Sup of a chain c if it is the least upper bound of the range of c.

Equations
Instances For
    def Scott.IsOpen (α : Type u) [OmegaCompletePartialOrder α] (s : Set α) :

    The characteristic function of open sets is monotone and preserves the limits of chains.

    Equations
    Instances For
      theorem Scott.IsOpen.inter (α : Type u) [OmegaCompletePartialOrder α] (s t : Set α) :
      IsOpen α sIsOpen α tIsOpen α (s t)
      theorem Scott.isOpen_sUnion (α : Type u) [OmegaCompletePartialOrder α] (s : Set (Set α)) (hs : ts, IsOpen α t) :
      IsOpen α (⋃₀ s)