Documentation

Mathlib.Topology.Separation.Profinite

Separation properties: profinite spaces #

A T0 space with a clopen basis is totally separated.

@[deprecated totallySeparatedSpace_of_t0_of_basis_clopen (since := "2025-09-11")]

Alias of totallySeparatedSpace_of_t0_of_basis_clopen.


A T0 space with a clopen basis is totally separated.

theorem nhds_basis_clopen {X : Type u_1} [TopologicalSpace X] [T2Space X] [CompactSpace X] [TotallyDisconnectedSpace X] (x : X) :
(nhds x).HasBasis (fun (s : Set X) => x s IsClopen s) id
theorem compact_exists_isClopen_in_isOpen {X : Type u_1} [TopologicalSpace X] [T2Space X] [CompactSpace X] [TotallyDisconnectedSpace X] {x : X} {U : Set X} (is_open : IsOpen U) (memU : x U) :
∃ (V : Set X), IsClopen V x V V U

Every member of an open set in a compact Hausdorff totally disconnected space is contained in a clopen set contained in the open set.

A locally compact Hausdorff totally disconnected space has a basis with clopen elements.

A locally compact Hausdorff space is totally disconnected if and only if it is totally separated.

@[instance 100]

A totally disconnected compact Hausdorff space is totally separated.

theorem exists_clopen_of_closed_subset_open {X : Type u_4} [TopologicalSpace X] [CompactSpace X] [T2Space X] [TotallyDisconnectedSpace X] {Z U : Set X} (hZ : IsClosed Z) (hU : IsOpen U) (hZU : Z U) :
∃ (C : Set X), IsClopen C Z C C U

In a totally disconnected compact Hausdorff space X, if Z ⊆ U are subsets with Z closed and U open, there exists a clopen C with Z ⊆ C ⊆ U.

theorem exists_clopen_partition_of_clopen_cover {X : Type u_4} {I : Type u_5} [TopologicalSpace X] [CompactSpace X] [T2Space X] [TotallyDisconnectedSpace X] [Finite I] {Z D : ISet X} (Z_closed : ∀ (i : I), IsClosed (Z i)) (D_clopen : ∀ (i : I), IsClopen (D i)) (Z_subset_D : ∀ (i : I), Z i D i) (Z_disj : Set.univ.PairwiseDisjoint Z) :
∃ (C : ISet X), (∀ (i : I), IsClopen (C i)) (∀ (i : I), Z i C i) (∀ (i : I), C i D i) ⋃ (i : I), D i ⋃ (i : I), C i Set.univ.PairwiseDisjoint C

Let X be a totally disconnected compact Hausdorff space, D i ⊆ X a finite family of clopens, and Z i ⊆ D i closed. Assume that the Z i are pairwise disjoint. Then there exist clopens Z i ⊆ C i ⊆ D i with the C i disjoint, and such that ∪ D i ⊆ ∪ C i.