Hash map lemmas #
This module contains lemmas about Std.Data.HashMap.Raw
. Most of the lemmas require
EquivBEq α
and LawfulHashable α
for the key type α
. The easiest way to obtain these instances
is to provide an instance of LawfulBEq α
.
@[simp]
theorem
Std.HashMap.Raw.isEmpty_insertIfNew
{α : Type u}
{β : Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{k : α}
{v : β}
:
theorem
Std.HashMap.Raw.contains_insertIfNew_self
{α : Type u}
{β : Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{k : α}
{v : β}
:
theorem
Std.HashMap.Raw.mem_insertIfNew_self
{α : Type u}
{β : Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{k : α}
{v : β}
:
theorem
Std.HashMap.Raw.contains_of_contains_insertIfNew'
{α : Type u}
{β : Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{k a : α}
{v : β}
:
This is a restatement of contains_insertIfNew
that is written to exactly match the proof
obligation in the statement of getElem_insertIfNew
.
theorem
Std.HashMap.Raw.mem_of_mem_insertIfNew'
{α : Type u}
{β : Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{k a : α}
{v : β}
:
This is a restatement of mem_insertIfNew
that is written to exactly match the proof obligation
in the statement of getElem_insertIfNew
.
theorem
Std.HashMap.Raw.size_le_size_insertIfNew
{α : Type u}
{β : Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{k : α}
{v : β}
:
theorem
Std.HashMap.Raw.size_insertIfNew_le
{α : Type u}
{β : Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{k : α}
{v : β}
:
theorem
Std.HashMap.Raw.distinct_keys
{α : Type u}
{β : Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
:
List.Pairwise (fun (a b : α) => (a == b) = false) m.keys
theorem
Std.HashMap.Raw.getKey?_insertMany_list_of_mem
{α : Type u}
{β : Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
:
theorem
Std.HashMap.Raw.getKey_insertMany_list_of_mem
{α : Type u}
{β : Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
{h' : k' ∈ m.insertMany l}
:
theorem
Std.HashMap.Raw.getKey!_insertMany_list_of_mem
{α : Type u}
{β : Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
[Inhabited α]
(h : m.WF)
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
:
theorem
Std.HashMap.Raw.getKeyD_insertMany_list_of_mem
{α : Type u}
{β : Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List (α × β)}
{k k' fallback : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
:
theorem
Std.HashMap.Raw.getElem?_insertMany_list_of_mem
{α : Type u}
{β : Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β}
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : (k, v) ∈ l)
:
theorem
Std.HashMap.Raw.getElem_insertMany_list_of_mem
{α : Type u}
{β : Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β}
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : (k, v) ∈ l)
{h' : k' ∈ m.insertMany l}
:
theorem
Std.HashMap.Raw.getElem!_insertMany_list_of_mem
{α : Type u}
{β : Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
[Inhabited β]
(h : m.WF)
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β}
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : (k, v) ∈ l)
:
theorem
Std.HashMap.Raw.getD_insertMany_list_of_mem
{α : Type u}
{β : Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
{v fallback : β}
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : (k, v) ∈ l)
:
theorem
Std.HashMap.Raw.getKey?_insertManyIfNewUnit_list_of_not_mem_of_mem
{α : Type u}
[BEq α]
[Hashable α]
{m : Raw α Unit}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List α}
{k k' : α}
(k_beq : (k == k') = true)
(not_mem : ¬k ∈ m)
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
(mem : k ∈ l)
:
theorem
Std.HashMap.Raw.getKey_insertManyIfNewUnit_list_of_not_mem_of_mem
{α : Type u}
[BEq α]
[Hashable α]
{m : Raw α Unit}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List α}
{k k' : α}
(k_beq : (k == k') = true)
(not_mem : ¬k ∈ m)
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
(mem : k ∈ l)
{h' : k' ∈ m.insertManyIfNewUnit l}
:
theorem
Std.HashMap.Raw.getKey_insertManyIfNewUnit_list_of_mem
{α : Type u}
[BEq α]
[Hashable α]
{m : Raw α Unit}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List α}
{k : α}
(mem : k ∈ m)
{h₃ : k ∈ m.insertManyIfNewUnit l}
:
theorem
Std.HashMap.Raw.getKey!_insertManyIfNewUnit_list_of_not_mem_of_mem
{α : Type u}
[BEq α]
[Hashable α]
{m : Raw α Unit}
[EquivBEq α]
[LawfulHashable α]
[Inhabited α]
(h : m.WF)
{l : List α}
{k k' : α}
(k_beq : (k == k') = true)
(not_mem : ¬k ∈ m)
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
(mem : k ∈ l)
:
theorem
Std.HashMap.Raw.getKeyD_insertManyIfNewUnit_list_of_not_mem_of_mem
{α : Type u}
[BEq α]
[Hashable α]
{m : Raw α Unit}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List α}
{k k' fallback : α}
(k_beq : (k == k') = true)
(not_mem : ¬k ∈ m)
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
(mem : k ∈ l)
:
theorem
Std.HashMap.Raw.size_insertManyIfNewUnit_list
{α : Type u}
[BEq α]
[Hashable α]
{m : Raw α Unit}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List α}
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
:
theorem
Std.HashMap.Raw.size_le_size_insertManyIfNewUnit_list
{α : Type u}
[BEq α]
[Hashable α]
{m : Raw α Unit}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List α}
:
theorem
Std.HashMap.Raw.getKey_ofList_of_mem
{α : Type u}
{β : Type v}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
{h' : k' ∈ ofList l}
:
theorem
Std.HashMap.Raw.getKey!_ofList_of_mem
{α : Type u}
{β : Type v}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
[Inhabited α]
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
:
theorem
Std.HashMap.Raw.getKeyD_ofList_of_mem
{α : Type u}
{β : Type v}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List (α × β)}
{k k' fallback : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
:
@[simp]
@[simp]
@[simp]
theorem
Std.HashMap.Raw.contains_unitOfList
{α : Type u}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k : α}
:
@[simp]
theorem
Std.HashMap.Raw.mem_unitOfList
{α : Type u}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k : α}
:
theorem
Std.HashMap.Raw.getKey?_unitOfList_of_contains_eq_false
{α : Type u}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k : α}
(contains_eq_false : l.contains k = false)
:
theorem
Std.HashMap.Raw.getKey?_unitOfList_of_mem
{α : Type u}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
(mem : k ∈ l)
:
theorem
Std.HashMap.Raw.getKey_unitOfList_of_mem
{α : Type u}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
(mem : k ∈ l)
{h' : k' ∈ unitOfList l}
:
theorem
Std.HashMap.Raw.getKeyD_unitOfList_of_contains_eq_false
{α : Type u}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k fallback : α}
(contains_eq_false : l.contains k = false)
:
theorem
Std.HashMap.Raw.getKeyD_unitOfList_of_mem
{α : Type u}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k k' fallback : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
(mem : k ∈ l)
:
theorem
Std.HashMap.Raw.size_unitOfList
{α : Type u}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List α}
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
:
theorem
Std.HashMap.Raw.size_unitOfList_le
{α : Type u}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List α}
:
@[simp]
theorem
Std.HashMap.Raw.isEmpty_unitOfList
{α : Type u}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List α}
:
@[simp]
theorem
Std.HashMap.Raw.getElem_unitOfList
{α : Type u}
[BEq α]
[Hashable α]
{l : List α}
{k : α}
{h : k ∈ unitOfList l}
:
@[simp]
theorem
Std.HashMap.Raw.get?_modify_self
{α : Type u}
{β : Type v}
[BEq α]
[Hashable α]
{m : Raw α β}
[EquivBEq α]
[LawfulHashable α]
{k : α}
{f : β → β}
(h : m.WF)
:
theorem
Std.HashMap.Raw.getD_modify
{α : Type u}
{β : Type v}
[BEq α]
[Hashable α]
{m : Raw α β}
[EquivBEq α]
[LawfulHashable α]
{k k' : α}
{fallback : β}
{f : β → β}
(h : m.WF)
: