Dependent hash map lemmas #
This file contains lemmas about Std.Data.DHashMap.Raw
. Most of the lemmas require
EquivBEq α
and LawfulHashable α
for the key type α
. The easiest way to obtain these instances
is to provide an instance of LawfulBEq α
.
Internal implementation detail of the hash map
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Std.DHashMap.Raw.isEmpty_insertIfNew
{α : Type u}
{β : α → Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{k : α}
{v : β k}
:
theorem
Std.DHashMap.Raw.contains_insertIfNew_self
{α : Type u}
{β : α → Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{k : α}
{v : β k}
:
theorem
Std.DHashMap.Raw.mem_insertIfNew_self
{α : Type u}
{β : α → Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{k : α}
{v : β k}
:
theorem
Std.DHashMap.Raw.contains_of_contains_insertIfNew'
{α : Type u}
{β : α → Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{k a : α}
{v : β k}
:
This is a restatement of contains_insertIfNew
that is written to exactly match the proof
obligation in the statement of get_insertIfNew
.
theorem
Std.DHashMap.Raw.mem_of_mem_insertIfNew'
{α : Type u}
{β : α → Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{k a : α}
{v : β k}
:
This is a restatement of mem_insertIfNew
that is written to exactly match the proof obligation
in the statement of get_insertIfNew
.
theorem
Std.DHashMap.Raw.size_le_size_insertIfNew
{α : Type u}
{β : α → Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{k : α}
{v : β k}
:
theorem
Std.DHashMap.Raw.size_insertIfNew_le
{α : Type u}
{β : α → Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{k : α}
{v : β k}
:
theorem
Std.DHashMap.Raw.distinct_keys
{α : Type u}
{β : α → Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
:
List.Pairwise (fun (a b : α) => (a == b) = false) m.keys
@[simp]
theorem
Std.DHashMap.Raw.insertMany_nil
{α : Type u}
{β : α → Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
:
@[simp]
theorem
Std.DHashMap.Raw.insertMany_list_singleton
{α : Type u}
{β : α → Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
{k : α}
{v : β k}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
:
theorem
Std.DHashMap.Raw.insertMany_cons
{α : Type u}
{β : α → Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
{l : List ((a : α) × β a)}
{k : α}
{v : β k}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
:
theorem
Std.DHashMap.Raw.get?_insertMany_list_of_mem
{α : Type u}
{β : α → Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[LawfulBEq α]
(h : m.WF)
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β k}
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : ⟨k, v⟩ ∈ l)
:
theorem
Std.DHashMap.Raw.get_insertMany_list_of_mem
{α : Type u}
{β : α → Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[LawfulBEq α]
(h : m.WF)
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β k}
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : ⟨k, v⟩ ∈ l)
{h' : k' ∈ m.insertMany l}
:
theorem
Std.DHashMap.Raw.get!_insertMany_list_of_mem
{α : Type u}
{β : α → Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[LawfulBEq α]
(h : m.WF)
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β k}
[Inhabited (β k')]
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : ⟨k, v⟩ ∈ l)
:
theorem
Std.DHashMap.Raw.getD_insertMany_list_of_mem
{α : Type u}
{β : α → Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[LawfulBEq α]
(h : m.WF)
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β k}
{fallback : β k'}
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : ⟨k, v⟩ ∈ l)
:
theorem
Std.DHashMap.Raw.getKey?_insertMany_list_of_mem
{α : Type u}
{β : α → Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Sigma.fst l)
:
theorem
Std.DHashMap.Raw.getKey_insertMany_list_of_contains_eq_false
{α : Type u}
{β : α → Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List ((a : α) × β a)}
{k : α}
(contains_eq_false : (List.map Sigma.fst l).contains k = false)
{h' : k ∈ m.insertMany l}
:
theorem
Std.DHashMap.Raw.getKey_insertMany_list_of_mem
{α : Type u}
{β : α → Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Sigma.fst l)
{h' : k' ∈ m.insertMany l}
:
theorem
Std.DHashMap.Raw.getKey!_insertMany_list_of_mem
{α : Type u}
{β : α → Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
[Inhabited α]
(h : m.WF)
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Sigma.fst l)
:
theorem
Std.DHashMap.Raw.getKeyD_insertMany_list_of_mem
{α : Type u}
{β : α → Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List ((a : α) × β a)}
{k k' fallback : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Sigma.fst l)
:
theorem
Std.DHashMap.Raw.size_le_size_insertMany_list
{α : Type u}
{β : α → Type v}
{m : Raw α β}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List ((a : α) × β a)}
:
theorem
Std.DHashMap.Raw.Const.getKey?_insertMany_list_of_mem
{α : Type u}
[BEq α]
[Hashable α]
{β : Type v}
{m : Raw α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
:
theorem
Std.DHashMap.Raw.Const.getKey_insertMany_list_of_contains_eq_false
{α : Type u}
[BEq α]
[Hashable α]
{β : Type v}
{m : Raw α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List (α × β)}
{k : α}
(contains_eq_false : (List.map Prod.fst l).contains k = false)
{h' : k ∈ insertMany m l}
:
theorem
Std.DHashMap.Raw.Const.getKey_insertMany_list_of_mem
{α : Type u}
[BEq α]
[Hashable α]
{β : Type v}
{m : Raw α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
{h' : k' ∈ insertMany m l}
:
theorem
Std.DHashMap.Raw.Const.getKey!_insertMany_list_of_contains_eq_false
{α : Type u}
[BEq α]
[Hashable α]
{β : Type v}
{m : Raw α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
[Inhabited α]
(h : m.WF)
{l : List (α × β)}
{k : α}
(contains_eq_false : (List.map Prod.fst l).contains k = false)
:
theorem
Std.DHashMap.Raw.Const.getKey!_insertMany_list_of_mem
{α : Type u}
[BEq α]
[Hashable α]
{β : Type v}
{m : Raw α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
[Inhabited α]
(h : m.WF)
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
:
theorem
Std.DHashMap.Raw.Const.getKeyD_insertMany_list_of_mem
{α : Type u}
[BEq α]
[Hashable α]
{β : Type v}
{m : Raw α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List (α × β)}
{k k' fallback : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
:
theorem
Std.DHashMap.Raw.Const.get?_insertMany_list_of_mem
{α : Type u}
[BEq α]
[Hashable α]
{β : Type v}
{m : Raw α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β}
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : (k, v) ∈ l)
:
theorem
Std.DHashMap.Raw.Const.get_insertMany_list_of_contains_eq_false
{α : Type u}
[BEq α]
[Hashable α]
{β : Type v}
{m : Raw α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List (α × β)}
{k : α}
(contains_eq_false : (List.map Prod.fst l).contains k = false)
{h' : k ∈ insertMany m l}
:
theorem
Std.DHashMap.Raw.Const.get_insertMany_list_of_mem
{α : Type u}
[BEq α]
[Hashable α]
{β : Type v}
{m : Raw α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β}
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : (k, v) ∈ l)
{h' : k' ∈ insertMany m l}
:
theorem
Std.DHashMap.Raw.Const.get!_insertMany_list_of_mem
{α : Type u}
[BEq α]
[Hashable α]
{β : Type v}
{m : Raw α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
[Inhabited β]
(h : m.WF)
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β}
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : (k, v) ∈ l)
:
theorem
Std.DHashMap.Raw.Const.getD_insertMany_list_of_mem
{α : Type u}
[BEq α]
[Hashable α]
{β : Type v}
{m : Raw α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
{v fallback : β}
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : (k, v) ∈ l)
:
theorem
Std.DHashMap.Raw.Const.getKey?_insertManyIfNewUnit_list_of_not_mem_of_contains_eq_false
{α : Type u}
[BEq α]
[Hashable α]
{m : Raw α fun (x : α) => Unit}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List α}
{k : α}
:
theorem
Std.DHashMap.Raw.Const.getKey_insertManyIfNewUnit_list_of_mem
{α : Type u}
[BEq α]
[Hashable α]
{m : Raw α fun (x : α) => Unit}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List α}
{k : α}
{h' : k ∈ insertManyIfNewUnit m l}
(mem : k ∈ m)
:
theorem
Std.DHashMap.Raw.Const.getKey_insertManyIfNewUnit_list_of_not_mem_of_mem
{α : Type u}
[BEq α]
[Hashable α]
{m : Raw α fun (x : α) => Unit}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List α}
{k k' : α}
(k_beq : (k == k') = true)
{h' : k' ∈ insertManyIfNewUnit m l}
:
¬k ∈ m → List.Pairwise (fun (a b : α) => (a == b) = false) l → k ∈ l → (insertManyIfNewUnit m l).getKey k' h' = k
theorem
Std.DHashMap.Raw.Const.getKey!_insertManyIfNewUnit_list_of_not_mem_of_mem
{α : Type u}
[BEq α]
[Hashable α]
{m : Raw α fun (x : α) => Unit}
[EquivBEq α]
[LawfulHashable α]
[Inhabited α]
(h : m.WF)
{l : List α}
{k k' : α}
(k_beq : (k == k') = true)
:
¬k ∈ m → List.Pairwise (fun (a b : α) => (a == b) = false) l → k ∈ l → (insertManyIfNewUnit m l).getKey! k' = k
theorem
Std.DHashMap.Raw.Const.getKeyD_insertManyIfNewUnit_list_of_not_mem_of_contains_eq_false
{α : Type u}
[BEq α]
[Hashable α]
{m : Raw α fun (x : α) => Unit}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List α}
{k fallback : α}
:
theorem
Std.DHashMap.Raw.Const.getKeyD_insertManyIfNewUnit_list_of_not_mem_of_mem
{α : Type u}
[BEq α]
[Hashable α]
{m : Raw α fun (x : α) => Unit}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List α}
{k k' fallback : α}
(k_beq : (k == k') = true)
:
¬k ∈ m → List.Pairwise (fun (a b : α) => (a == b) = false) l → k ∈ l → (insertManyIfNewUnit m l).getKeyD k' fallback = k
theorem
Std.DHashMap.Raw.Const.size_insertManyIfNewUnit_list
{α : Type u}
[BEq α]
[Hashable α]
{m : Raw α fun (x : α) => Unit}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List α}
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
:
theorem
Std.DHashMap.Raw.Const.size_le_size_insertManyIfNewUnit_list
{α : Type u}
[BEq α]
[Hashable α]
{m : Raw α fun (x : α) => Unit}
[EquivBEq α]
[LawfulHashable α]
(h : m.WF)
{l : List α}
:
@[simp]
theorem
Std.DHashMap.Raw.Const.get_insertManyIfNewUnit_list
{α : Type u}
[BEq α]
[Hashable α]
{m : Raw α fun (x : α) => Unit}
{l : List α}
{k : α}
{h : k ∈ insertManyIfNewUnit m l}
:
theorem
Std.DHashMap.Raw.ofList_cons
{α : Type u}
{β : α → Type v}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{k : α}
{v : β k}
{tl : List ((a : α) × β a)}
:
theorem
Std.DHashMap.Raw.get_ofList_of_mem
{α : Type u}
{β : α → Type v}
[BEq α]
[Hashable α]
[LawfulBEq α]
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β k}
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : ⟨k, v⟩ ∈ l)
{h : k' ∈ ofList l}
:
theorem
Std.DHashMap.Raw.get!_ofList_of_mem
{α : Type u}
{β : α → Type v}
[BEq α]
[Hashable α]
[LawfulBEq α]
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β k}
[Inhabited (β k')]
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : ⟨k, v⟩ ∈ l)
:
theorem
Std.DHashMap.Raw.getD_ofList_of_mem
{α : Type u}
{β : α → Type v}
[BEq α]
[Hashable α]
[LawfulBEq α]
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β k}
{fallback : β k'}
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : ⟨k, v⟩ ∈ l)
:
theorem
Std.DHashMap.Raw.getKey?_ofList_of_mem
{α : Type u}
{β : α → Type v}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Sigma.fst l)
:
theorem
Std.DHashMap.Raw.getKey_ofList_of_mem
{α : Type u}
{β : α → Type v}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Sigma.fst l)
{h' : k' ∈ ofList l}
:
theorem
Std.DHashMap.Raw.getKey!_ofList_of_mem
{α : Type u}
{β : α → Type v}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
[Inhabited α]
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Sigma.fst l)
:
theorem
Std.DHashMap.Raw.getKeyD_ofList_of_mem
{α : Type u}
{β : α → Type v}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List ((a : α) × β a)}
{k k' fallback : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Sigma.fst l)
:
theorem
Std.DHashMap.Raw.Const.getKey_ofList_of_mem
{α : Type u}
[BEq α]
[Hashable α]
{β : Type v}
[EquivBEq α]
[LawfulHashable α]
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
{h' : k' ∈ ofList l}
:
theorem
Std.DHashMap.Raw.Const.getKey!_ofList_of_mem
{α : Type u}
[BEq α]
[Hashable α]
{β : Type v}
[EquivBEq α]
[LawfulHashable α]
[Inhabited α]
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
:
theorem
Std.DHashMap.Raw.Const.getKeyD_ofList_of_mem
{α : Type u}
[BEq α]
[Hashable α]
{β : Type v}
[EquivBEq α]
[LawfulHashable α]
{l : List (α × β)}
{k k' fallback : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
:
@[simp]
@[simp]
theorem
Std.DHashMap.Raw.Const.unitOfList_cons
{α : Type u}
[BEq α]
[Hashable α]
{hd : α}
{tl : List α}
:
@[simp]
theorem
Std.DHashMap.Raw.Const.contains_unitOfList
{α : Type u}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k : α}
:
@[simp]
theorem
Std.DHashMap.Raw.Const.mem_unitOfList
{α : Type u}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k : α}
:
theorem
Std.DHashMap.Raw.Const.getKey?_unitOfList_of_contains_eq_false
{α : Type u}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k : α}
(contains_eq_false : l.contains k = false)
:
theorem
Std.DHashMap.Raw.Const.getKey?_unitOfList_of_mem
{α : Type u}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
(mem : k ∈ l)
:
theorem
Std.DHashMap.Raw.Const.getKey_unitOfList_of_mem
{α : Type u}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
(mem : k ∈ l)
{h' : k' ∈ unitOfList l}
:
theorem
Std.DHashMap.Raw.Const.getKeyD_unitOfList_of_contains_eq_false
{α : Type u}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k fallback : α}
(contains_eq_false : l.contains k = false)
:
theorem
Std.DHashMap.Raw.Const.getKeyD_unitOfList_of_mem
{α : Type u}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k k' fallback : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
(mem : k ∈ l)
:
theorem
Std.DHashMap.Raw.Const.size_unitOfList
{α : Type u}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List α}
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
:
theorem
Std.DHashMap.Raw.Const.size_unitOfList_le
{α : Type u}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List α}
:
@[simp]
theorem
Std.DHashMap.Raw.Const.isEmpty_unitOfList
{α : Type u}
[BEq α]
[Hashable α]
[EquivBEq α]
[LawfulHashable α]
{l : List α}
:
@[simp]
theorem
Std.DHashMap.Raw.Const.get_unitOfList
{α : Type u}
[BEq α]
[Hashable α]
{l : List α}
{k : α}
{h : k ∈ unitOfList l}
:
@[simp]
@[simp]
@[simp]
theorem
Std.DHashMap.Raw.Const.get?_modify_self
{α : Type u}
[BEq α]
[Hashable α]
{β : Type v}
{m : Raw α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{k : α}
{f : β → β}
(h : m.WF)
:
theorem
Std.DHashMap.Raw.Const.getD_modify
{α : Type u}
[BEq α]
[Hashable α]
{β : Type v}
{m : Raw α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{k k' : α}
{fallback : β}
{f : β → β}
(h : m.WF)
:
theorem
Std.DHashMap.Raw.Const.getKey!_modify
{α : Type u}
[BEq α]
[Hashable α]
{β : Type v}
{m : Raw α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
[Inhabited α]
{k k' : α}
{f : β → β}
(h : m.WF)
:
theorem
Std.DHashMap.Raw.Const.getKeyD_modify
{α : Type u}
[BEq α]
[Hashable α]
{β : Type v}
{m : Raw α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{k k' fallback : α}
{f : β → β}
(h : m.WF)
: