Documentation

SphereEversion.Global.LocalizedConstruction

theorem OpenSmoothEmbedding.improve_formalSol {EM : Type u_1} [NormedAddCommGroup EM] [NormedSpace EM] [FiniteDimensional EM] {HM : Type u_2} [TopologicalSpace HM] {IM : ModelWithCorners EM HM} {M : Type u_3} [TopologicalSpace M] [ChartedSpace HM M] [IsManifold IM (↑) M] [T2Space M] {EX : Type u_4} [NormedAddCommGroup EX] [NormedSpace EX] [FiniteDimensional EX] {HX : Type u_5} [TopologicalSpace HX] {IX : ModelWithCorners EX HX} {X : Type u_6} [MetricSpace X] [ChartedSpace HX X] [IsManifold IX (↑) X] (φ : OpenSmoothEmbedding (modelWithCornersSelf EM) EM IM M) (ψ : OpenSmoothEmbedding (modelWithCornersSelf EX) EX IX X) {R : RelMfld IM M IX X} (hRample : R.Ample) (hRopen : IsOpen R) {C : Set M} (hC : IsClosed C) {δ : M} (hδ_pos : ∀ (x : M), 0 < δ x) (hδ_cont : Continuous δ) {F : FormalSol R} (hFφψ : F.bs '' Set.range φ Set.range ψ) (hFC : ∀ᶠ (x : M) in nhdsSet C, F.IsHolonomicAt x) {K₀ K₁ : Set EM} (hK₀ : IsCompact K₀) (hK₁ : IsCompact K₁) (hK₀K₁ : K₀ interior K₁) :
∃ (F' : HtpyFormalSol R), (∀ᶠ (t : ) in nhdsSet (Set.Iic 0), F' t = F) (∀ᶠ (t : ) in nhdsSet (Set.Ici 1), F' t = F' 1) (∀ᶠ (x : M) in nhdsSet C, ∀ (t : ), (F' t) x = F x) (∀ (t : ), xφ '' K₁, (F' t) x = F x) (∀ (t : ) (x : M), dist ((F' t).bs x) (F.bs x) < δ x) ∀ᶠ (x : M) in nhdsSet (C φ '' K₀), (F' 1).IsHolonomicAt x