Documentation

SphereEversion.Global.OneJetSec

Sections of 1-jet bundles #

In this file we study sections of 1-jet bundles. This is the direct continuation of OneJetBundle.lean but it imports more files, hence the cut.

Main definitions #

In this file we consider two manifolds M and M' with models I and I'

structure OneJetSec {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') (M' : Type u_7) [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] :
Type (max (max (max u_2 u_4) u_5) u_7)

A section of a 1-jet bundle seen as a bundle over the source manifold.

Instances For
    theorem OneJetSec.ext {𝕜 : Type u_1} {inst✝ : NontriviallyNormedField 𝕜} {E : Type u_2} {inst✝¹ : NormedAddCommGroup E} {inst✝² : NormedSpace 𝕜 E} {H : Type u_3} {inst✝³ : TopologicalSpace H} {I : ModelWithCorners 𝕜 E H} {M : Type u_4} {inst✝⁴ : TopologicalSpace M} {inst✝⁵ : ChartedSpace H M} {inst✝⁶ : IsManifold I (↑) M} {E' : Type u_5} {inst✝⁷ : NormedAddCommGroup E'} {inst✝⁸ : NormedSpace 𝕜 E'} {H' : Type u_6} {inst✝⁹ : TopologicalSpace H'} {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} {inst✝¹⁰ : TopologicalSpace M'} {inst✝¹¹ : ChartedSpace H' M'} {inst✝¹² : IsManifold I' (↑) M'} {x y : OneJetSec I M I' M'} (bs : x.bs = y.bs) (ϕ : x.ϕ = y.ϕ) :
    x = y
    instance instFunLikeOneJetSecOneJetBundle {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') (M' : Type u_7) [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] :
    FunLike (OneJetSec I M I' M') M (OneJetBundle I M I' M')
    Equations
    def OneJetSec.mk' {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] (F : MOneJetBundle I M I' M') (hF : ∀ (m : M), (F m).proj.1 = m) (h2F : ContMDiff I ((I.prod I').prod (modelWithCornersSelf 𝕜 (E →L[𝕜] E'))) (↑) F) :
    OneJetSec I M I' M'
    Equations
    • OneJetSec.mk' F hF h2F = { bs := fun (x : M) => (F x).proj.2, ϕ := fun (x : M) => (F x).snd, smooth' := }
    Instances For
      theorem OneJetSec.coe_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] (F : OneJetSec I M I' M') (x : M) :
      F x = { proj := (x, F.bs x), snd := F.ϕ x }
      theorem OneJetSec.fst_eq {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] (F : OneJetSec I M I' M') (x : M) :
      (F x).proj = (x, F.bs x)
      theorem OneJetSec.snd_eq {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] (F : OneJetSec I M I' M') (x : M) :
      (F x).snd = F.ϕ x
      theorem OneJetSec.is_sec {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] (F : OneJetSec I M I' M') (x : M) :
      (F x).proj.1 = x
      theorem OneJetSec.bs_eq {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] (F : OneJetSec I M I' M') (x : M) :
      F.bs x = (F x).proj.2
      theorem OneJetSec.smooth {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] (F : OneJetSec I M I' M') :
      ContMDiff I ((I.prod I').prod (modelWithCornersSelf 𝕜 (E →L[𝕜] E'))) F
      theorem OneJetSec.smooth_eta {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] (F : OneJetSec I M I' M') :
      ContMDiff I ((I.prod I').prod (modelWithCornersSelf 𝕜 (E →L[𝕜] E'))) fun (x : M) => OneJetBundle.mk x (F.bs x) (F x).snd
      theorem OneJetSec.smooth_bs {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] (F : OneJetSec I M I' M') :
      ContMDiff I I' (↑) F.bs
      def OneJetSec.IsHolonomicAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] (F : OneJetSec I M I' M') (x : M) :

      A section of J¹(M, M') is holonomic at (x : M) if its linear map part is the derivative of its base map at x.

      Equations
      Instances For
        theorem OneJetSec.isHolonomicAt_iff {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : OneJetSec I M I' M'} {x : M} :
        F.IsHolonomicAt x oneJetExt I I' F.bs x = F x

        A section of J¹(M, M') is holonomic at (x : M) iff it coincides with the 1-jet extension of its base map at x.

        theorem OneJetSec.isHolonomicAt_congr {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F F' : OneJetSec I M I' M'} {x : M} (h : F =ᶠ[nhds x] F') :
        theorem OneJetSec.IsHolonomicAt.congr {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F F' : OneJetSec I M I' M'} {x : M} (hF : F.IsHolonomicAt x) (h : F =ᶠ[nhds x] F') :
        def OneJetSec.IsHolonomic {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] (F : OneJetSec I M I' M') :

        A map from M to J¹(M, M') is holonomic if its linear map part is the derivative of its base map at every point.

        Equations
        Instances For
          def IsHolonomicGerm {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {x : M} (φ : (nhds x).Germ (OneJetBundle I M I' M')) :
          Equations
          Instances For
            def oneJetExtSec {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] (f : ContMDiffMap I I' M M' ) :
            OneJetSec I M I' M'

            The one-jet extension of a function, seen as a section of the 1-jet bundle.

            Equations
            Instances For
              structure FamilyOneJetSec {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] (I : ModelWithCorners E H) (M : Type u_3) [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners E' H') (M' : Type u_6) [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_7} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_8} [TopologicalSpace G] (J : ModelWithCorners F G) (N : Type u_9) [TopologicalSpace N] [ChartedSpace G N] :
              Type (max (max (max (max u_1 u_3) u_4) u_6) u_9)

              A family of jet sections indexed by manifold N is a function from N into jet sections in such a way that the function is smooth as a function of all arguments.

              Instances For
                theorem FamilyOneJetSec.ext {E : Type u_1} {inst✝ : NormedAddCommGroup E} {inst✝¹ : NormedSpace E} {H : Type u_2} {inst✝² : TopologicalSpace H} {I : ModelWithCorners E H} {M : Type u_3} {inst✝³ : TopologicalSpace M} {inst✝⁴ : ChartedSpace H M} {inst✝⁵ : IsManifold I (↑) M} {E' : Type u_4} {inst✝⁶ : NormedAddCommGroup E'} {inst✝⁷ : NormedSpace E'} {H' : Type u_5} {inst✝⁸ : TopologicalSpace H'} {I' : ModelWithCorners E' H'} {M' : Type u_6} {inst✝⁹ : TopologicalSpace M'} {inst✝¹⁰ : ChartedSpace H' M'} {inst✝¹¹ : IsManifold I' (↑) M'} {F : Type u_7} {inst✝¹² : NormedAddCommGroup F} {inst✝¹³ : NormedSpace F} {G : Type u_8} {inst✝¹⁴ : TopologicalSpace G} {J : ModelWithCorners F G} {N : Type u_9} {inst✝¹⁵ : TopologicalSpace N} {inst✝¹⁶ : ChartedSpace G N} {x y : FamilyOneJetSec I M I' M' J N} (bs : x.bs = y.bs) (ϕ : x.ϕ = y.ϕ) :
                x = y
                instance instFunLikeFamilyOneJetSecOneJetSecReal {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] (I : ModelWithCorners E H) (M : Type u_3) [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners E' H') (M' : Type u_6) [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_7} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_8} [TopologicalSpace G] (J : ModelWithCorners F G) (N : Type u_9) [TopologicalSpace N] [ChartedSpace G N] :
                FunLike (FamilyOneJetSec I M I' M' J N) N (OneJetSec I M I' M')
                Equations
                def FamilyOneJetSec.mk' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_7} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_8} [TopologicalSpace G] {J : ModelWithCorners F G} {N : Type u_9} [TopologicalSpace N] [ChartedSpace G N] (FF : NMOneJetBundle I M I' M') (hF : ∀ (n : N) (m : M), (FF n m).proj.1 = m) (h2F : ContMDiff (J.prod I) ((I.prod I').prod (modelWithCornersSelf (E →L[] E'))) (↑) (Function.uncurry FF)) :
                FamilyOneJetSec I M I' M' J N
                Equations
                • FamilyOneJetSec.mk' FF hF h2F = { bs := fun (s : N) (x : M) => (FF s x).proj.2, ϕ := fun (s : N) (x : M) => (FF s x).snd, smooth' := }
                Instances For
                  theorem FamilyOneJetSec.coe_mk' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_7} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_8} [TopologicalSpace G] {J : ModelWithCorners F G} {N : Type u_9} [TopologicalSpace N] [ChartedSpace G N] (FF : NMOneJetBundle I M I' M') (hF : ∀ (n : N) (m : M), (FF n m).proj.1 = m) (h2F : ContMDiff (J.prod I) ((I.prod I').prod (modelWithCornersSelf (E →L[] E'))) (↑) (Function.uncurry FF)) (x : N) :
                  (FamilyOneJetSec.mk' FF hF h2F) x = OneJetSec.mk' (FF x)
                  @[simp]
                  theorem FamilyOneJetSec.bs_eq_coe_bs {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_7} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_8} [TopologicalSpace G] {J : ModelWithCorners F G} {N : Type u_9} [TopologicalSpace N] [ChartedSpace G N] (S : FamilyOneJetSec I M I' M' J N) (s : N) :
                  S.bs s = (S s).bs
                  theorem FamilyOneJetSec.bs_eq {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_7} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_8} [TopologicalSpace G] {J : ModelWithCorners F G} {N : Type u_9} [TopologicalSpace N] [ChartedSpace G N] (S : FamilyOneJetSec I M I' M' J N) (s : N) (x : M) :
                  S.bs s x = ((S s) x).proj.2
                  @[simp]
                  theorem FamilyOneJetSec.coe_ϕ {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_7} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_8} [TopologicalSpace G] {J : ModelWithCorners F G} {N : Type u_9} [TopologicalSpace N] [ChartedSpace G N] (S : FamilyOneJetSec I M I' M' J N) (s : N) :
                  (S s).ϕ = S.ϕ s
                  theorem FamilyOneJetSec.smooth {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_7} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_8} [TopologicalSpace G] {J : ModelWithCorners F G} {N : Type u_9} [TopologicalSpace N] [ChartedSpace G N] (S : FamilyOneJetSec I M I' M' J N) :
                  ContMDiff (J.prod I) ((I.prod I').prod (modelWithCornersSelf (E →L[] E'))) fun (p : N × M) => (S p.1) p.2
                  theorem FamilyOneJetSec.smooth_bs {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_7} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_8} [TopologicalSpace G] {J : ModelWithCorners F G} {N : Type u_9} [TopologicalSpace N] [ChartedSpace G N] (S : FamilyOneJetSec I M I' M' J N) :
                  ContMDiff (J.prod I) I' fun (p : N × M) => S.bs p.1 p.2
                  theorem FamilyOneJetSec.smooth_coe_bs {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_7} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_8} [TopologicalSpace G] {J : ModelWithCorners F G} {N : Type u_9} [TopologicalSpace N] [ChartedSpace G N] (S : FamilyOneJetSec I M I' M' J N) {p : N} :
                  ContMDiff I I' (↑) (S.bs p)
                  def FamilyOneJetSec.reindex {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_7} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_8} [TopologicalSpace G] {J : ModelWithCorners F G} {N : Type u_9} [TopologicalSpace N] [ChartedSpace G N] {F' : Type u_10} [NormedAddCommGroup F'] [NormedSpace F'] {G' : Type u_11} [TopologicalSpace G'] {J' : ModelWithCorners F' G'} {N' : Type u_12} [TopologicalSpace N'] [ChartedSpace G' N'] (S : FamilyOneJetSec I M I' M' J' N') (f : ContMDiffMap J J' N N' ) :
                  FamilyOneJetSec I M I' M' J N

                  Reindex a family along a smooth function f.

                  Equations
                  • S.reindex f = { bs := fun (t : N) => S.bs (f t), ϕ := fun (t : N) => S.ϕ (f t), smooth' := }
                  Instances For
                    def FamilyOneJetSec.uncurry {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {EP : Type u_13} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_14} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_15} [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] (S : FamilyOneJetSec I M I' M' IP P) :
                    OneJetSec (IP.prod I) (P × M) I' M'

                    Turn a family of sections of J¹(M, M') parametrized by N into a section of J¹(N × M, M').

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[simp]
                      theorem FamilyOneJetSec.uncurry_ϕ {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {EP : Type u_13} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_14} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_15} [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] (S : FamilyOneJetSec I M I' M' IP P) (p : P × M) :
                      S.uncurry.ϕ p = mfderiv (IP.prod I) I' (fun (z : P × M) => S.bs z.1 p.2) p + (S.ϕ p.1 p.2).comp (mfderiv (IP.prod I) I Prod.snd p)
                      @[simp]
                      theorem FamilyOneJetSec.uncurry_bs {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {EP : Type u_13} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_14} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_15} [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] (S : FamilyOneJetSec I M I' M' IP P) (p : P × M) :
                      S.uncurry.bs p = S.bs p.1 p.2
                      theorem FamilyOneJetSec.uncurry_ϕ' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {EP : Type u_13} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_14} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_15} [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] (S : FamilyOneJetSec I M I' M' IP P) (p : P × M) :
                      S.uncurry.ϕ p = (mfderiv IP I' (fun (z : P) => S.bs z p.2) p.1).comp (ContinuousLinearMap.fst EP E) + (S.ϕ p.1 p.2).comp (ContinuousLinearMap.snd EP E)
                      theorem FamilyOneJetSec.isHolonomicAt_uncurry {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {EP : Type u_13} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_14} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_15} [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] (S : FamilyOneJetSec I M I' M' IP P) {p : P × M} :
                      @[reducible]
                      def HtpyOneJetSec {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] (I : ModelWithCorners E H) (M : Type u_3) [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners E' H') (M' : Type u_6) [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] :
                      Type (max (max (max (max u_1 u_3) u_4) u_6) 0)

                      A homotopy of 1-jet sections is a family of 1-jet sections indexed by

                      Equations
                      Instances For