Documentation

SphereEversion.Global.ParametricityForFree

Fundamental definitions #

def RelMfld.relativize {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_8} [TopologicalSpace HP] (IP : ModelWithCorners EP HP) (P : Type u_9) [TopologicalSpace P] [ChartedSpace HP P] (R : RelMfld I M I' M') :
RelMfld (IP.prod I) (P × M) I' M'

The relation 𝓡 ^ P

Equations
Instances For
    theorem RelMfld.mem_relativize {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_8} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_9} [TopologicalSpace P] [ChartedSpace HP P] (R : RelMfld I M I' M') (w : OneJetBundle (IP.prod I) (P × M) I' M') :
    theorem RelMfld.isOpen_relativize {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_8} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_9} [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] (R : RelMfld I M I' M') (h2 : IsOpen R) :
    theorem relativize_slice {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_8} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_9} [TopologicalSpace P] [ChartedSpace HP P] {R : RelMfld I M I' M'} {σ : OneJetBundle (IP.prod I) (P × M) I' M'} {p : DualPair (TangentSpace (IP.prod I) σ.proj.1)} (q : DualPair (TangentSpace I σ.proj.1.2)) (hpq : p.π.comp (ContinuousLinearMap.inr EP E) = q.π) :
    (RelMfld.relativize IP P R).slice σ p = σ.snd (p.v - id (0, q.v)) +ᵥ id (R.slice (bundleSnd σ) q)
    theorem relativize_slice_eq_univ {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_8} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_9} [TopologicalSpace P] [ChartedSpace HP P] {R : RelMfld I M I' M'} {σ : OneJetBundle (IP.prod I) (P × M) I' M'} {p : DualPair (TangentSpace (IP.prod I) σ.proj.1)} (hp : p.π.comp (ContinuousLinearMap.inr EP E) = 0) :
    theorem RelMfld.Ample.relativize {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_8} [TopologicalSpace HP] (IP : ModelWithCorners EP HP) (P : Type u_9) [TopologicalSpace P] [ChartedSpace HP P] {R : RelMfld I M I' M'} (hR : R.Ample) :
    theorem FamilyOneJetSec.uncurry_mem_relativize {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_8} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_9} [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] {R : RelMfld I M I' M'} (S : FamilyOneJetSec I M I' M' IP P) {s : P} {x : M} :
    S.uncurry (s, x) RelMfld.relativize IP P R (S s) x R
    def FamilyFormalSol.uncurry {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_8} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_9} [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] {R : RelMfld I M I' M'} (S : FamilyFormalSol IP P R) :
    Equations
    Instances For
      theorem FamilyFormalSol.uncurry_ϕ' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_8} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_9} [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] {R : RelMfld I M I' M'} (S : FamilyFormalSol IP P R) (p : P × M) :
      S.uncurry.ϕ p = (mfderiv IP I' (fun (z : P) => S.bs z p.2) p.1).comp (ContinuousLinearMap.fst EP E) + (S.ϕ p.1 p.2).comp (ContinuousLinearMap.snd EP E)
      def FamilyOneJetSec.curry {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_8} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_9} [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] {F : Type u_10} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_11} [TopologicalSpace G] {J : ModelWithCorners F G} {N : Type u_12} [TopologicalSpace N] [ChartedSpace G N] [IsManifold J (↑) N] (S : FamilyOneJetSec (IP.prod I) (P × M) I' M' J N) :
      FamilyOneJetSec I M I' M' (J.prod IP) (N × P)
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem FamilyOneJetSec.curry_bs {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_8} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_9} [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] {F : Type u_10} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_11} [TopologicalSpace G] {J : ModelWithCorners F G} {N : Type u_12} [TopologicalSpace N] [ChartedSpace G N] [IsManifold J (↑) N] (S : FamilyOneJetSec (IP.prod I) (P × M) I' M' J N) (p : N × P) (x : M) :
        (S.curry p).bs x = (S p.1).bs (p.2, x)
        theorem FamilyOneJetSec.curry_ϕ {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_8} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_9} [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] {F : Type u_10} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_11} [TopologicalSpace G] {J : ModelWithCorners F G} {N : Type u_12} [TopologicalSpace N] [ChartedSpace G N] [IsManifold J (↑) N] (S : FamilyOneJetSec (IP.prod I) (P × M) I' M' J N) (p : N × P) (x : M) :
        (S.curry p).ϕ x = ((S p.1).ϕ (p.2, x)).comp (mfderiv I (IP.prod I) (fun (x : M) => (p.2, x)) x)
        theorem FamilyOneJetSec.curry_ϕ' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_8} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_9} [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] {F : Type u_10} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_11} [TopologicalSpace G] {J : ModelWithCorners F G} {N : Type u_12} [TopologicalSpace N] [ChartedSpace G N] [IsManifold J (↑) N] (S : FamilyOneJetSec (IP.prod I) (P × M) I' M' J N) (p : N × P) (x : M) :
        (S.curry p).ϕ x = ((S p.1).ϕ (p.2, x)).comp (ContinuousLinearMap.inr EP E)
        theorem FormalSol.eq_iff {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {R : RelMfld I M I' M'} {F₁ F₂ : FormalSol R} {x : M} :
        F₁ x = F₂ x F₁.bs x = F₂.bs x F₁.ϕ x = F₂.ϕ x
        theorem FamilyOneJetSec.isHolonomicAt_curry {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_8} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_9} [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] {F : Type u_10} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_11} [TopologicalSpace G] {J : ModelWithCorners F G} {N : Type u_12} [TopologicalSpace N] [ChartedSpace G N] [IsManifold J (↑) N] (S : FamilyOneJetSec (IP.prod I) (P × M) I' M' J N) {t : N} {s : P} {x : M} (hS : (S t).IsHolonomicAt (s, x)) :
        theorem FamilyOneJetSec.curry_mem {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_8} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_9} [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] {F : Type u_10} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_11} [TopologicalSpace G] {J : ModelWithCorners F G} {N : Type u_12} [TopologicalSpace N] [ChartedSpace G N] [IsManifold J (↑) N] {R : RelMfld I M I' M'} (S : FamilyOneJetSec (IP.prod I) (P × M) I' M' J N) {p : N × P} {x : M} (hR : (S p.1) (p.2, x) RelMfld.relativize IP P R) :
        (S.curry p) x R
        def FamilyFormalSol.curry {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_8} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_9} [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] {F : Type u_10} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_11} [TopologicalSpace G] {J : ModelWithCorners F G} {N : Type u_12} [TopologicalSpace N] [ChartedSpace G N] [IsManifold J (↑) N] {R : RelMfld I M I' M'} (S : FamilyFormalSol J N (RelMfld.relativize IP P R)) :
        FamilyFormalSol (J.prod IP) (N × P) R
        Equations
        • S.curry = { toFamilyOneJetSec := S.curry, is_sol' := }
        Instances For
          theorem FamilyFormalSol.curry_ϕ' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_8} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_9} [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] {F : Type u_10} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_11} [TopologicalSpace G] {J : ModelWithCorners F G} {N : Type u_12} [TopologicalSpace N] [ChartedSpace G N] [IsManifold J (↑) N] {R : RelMfld I M I' M'} (S : FamilyFormalSol J N (RelMfld.relativize IP P R)) (p : N × P) (x : M) :
          (S.curry p).ϕ x = ((S p.1).ϕ (p.2, x)).comp (ContinuousLinearMap.inr EP E)
          theorem curry_eq_iff_eq_uncurry {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_8} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_9} [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] {F : Type u_10} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_11} [TopologicalSpace G] {J : ModelWithCorners F G} {N : Type u_12} [TopologicalSpace N] [ChartedSpace G N] [IsManifold J (↑) N] {R : RelMfld I M I' M'} {𝓕 : FamilyFormalSol J N (RelMfld.relativize IP P R)} {𝓕₀ : FamilyFormalSol IP P R} {t : N} {x : M} {s : P} (h : (𝓕 t) (s, x) = 𝓕₀.uncurry (s, x)) :
          (𝓕.curry (t, s)) x = (𝓕₀ s) x
          theorem RelMfld.SatisfiesHPrinciple.satisfiesHPrincipleWith {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] {HP : Type u_8} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} {P : Type u_9} [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] {EX : Type u_13} [NormedAddCommGroup EX] [NormedSpace EX] {HX : Type u_14} [TopologicalSpace HX] {IX : ModelWithCorners EX HX} {X : Type u_15} [MetricSpace X] [ChartedSpace HX X] [IsManifold IX (↑) X] (R : RelMfld I M IX X) {C : Set (P × M)} (ε : M) (h : (relativize IP P R).SatisfiesHPrinciple C fun (x : P × M) => ε x.2) :