Documentation

SphereEversion.Main

The sphere eversion project #

The goal of this project was to formalize Gromov's flexibility theorem for open and ample partial differential relation. A famous corollary of this theorem is Smale's sphere eversion theorem: you can turn a sphere inside-out. Let us state this corollary first.

theorem Smale :
∃ (f : (Metric.sphere 0 1)ℝ³), ContMDiff ((modelWithCornersSelf ).prod (modelWithCornersSelf (ℝ^2))) (modelWithCornersSelf ℝ³) f (f 0 = fun (x : (Metric.sphere 0 1)) => x) (f 1 = fun (x : (Metric.sphere 0 1)) => -x) ∀ (t : ), Immersion (modelWithCornersSelf (ℝ^2)) (modelWithCornersSelf ℝ³) (f t)
theorem Gromov (n n' d : ) {M : Type u_1} [TopologicalSpace M] [ChartedSpace (ℝ^n) M] [IsManifold (modelWithCornersSelf (ℝ^n)) (↑) M] [T2Space M] [SigmaCompactSpace M] {M' : Type u_2} [MetricSpace M'] [ChartedSpace (ℝ^n') M'] [IsManifold (modelWithCornersSelf (ℝ^n')) (↑) M'] [SigmaCompactSpace M'] {P : Type u_3} [TopologicalSpace P] [ChartedSpace (ℝ^d) P] [IsManifold (modelWithCornersSelf (ℝ^d)) (↑) P] [T2Space P] [SigmaCompactSpace P] {R : RelMfld (modelWithCornersSelf (ℝ^n)) M (modelWithCornersSelf (ℝ^n')) M'} (hRample : R.Ample) (hRopen : IsOpen R) {C : Set (P × M)} (hC : IsClosed C) {ε : M} (ε_pos : ∀ (x : M), 0 < ε x) (ε_cont : Continuous ε) (𝓕₀ : FamilyFormalSol (modelWithCornersSelf (ℝ^d)) P R) (hhol : ∀ᶠ (p : P × M) in nhdsSet C, (𝓕₀ p.1).IsHolonomicAt p.2) :
∃ (𝓕 : FamilyFormalSol ((modelWithCornersSelf ).prod (modelWithCornersSelf (ℝ^d))) ( × P) R), (∀ (p : P) (x : M), (𝓕 (0, p)) x = (𝓕₀ p) x) (∀ (p : P), (𝓕 (1, p)).IsHolonomic) (∀ᶠ (p : P × M) in nhdsSet C, ∀ (t : ), (𝓕 (t, p.1)) p.2 = (𝓕₀ p.1) p.2) ∀ (t : ) (p : P) (x : M), dist ((𝓕 (t, p)).bs x) ((𝓕₀ p).bs x) ε x

Gromov's flexibility theorem for open and ample first order partial differential relations for maps between manifolds.