Documentation

SphereEversion.Global.Immersion

def immersionRel {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] (I : ModelWithCorners E H) (M : Type u_3) [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners E' H') (M' : Type u_6) [TopologicalSpace M'] [ChartedSpace H' M'] :
RelMfld I M I' M'

The relation of immersions for maps between two manifolds.

Equations
Instances For
    @[simp]
    theorem mem_immersionRel_iff {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] (I : ModelWithCorners E H) {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners E' H') {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] {σ : OneJetBundle I M I' M'} :
    theorem mem_immersionRel_iff' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] (I : ModelWithCorners E H) {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners E' H') {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {σ σ' : OneJetBundle I M I' M'} (hσ' : σ' (chartAt (ModelProd (ModelProd H H') (E →L[] E')) σ).source) :
    σ' immersionRel I M I' M' Function.Injective ((chartAt (ModelProd (ModelProd H H') (E →L[] E')) σ) σ').2

    A characterisation of the immersion relation in terms of a local chart.

    theorem chartAt_image_immersionRel_eq {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] (I : ModelWithCorners E H) {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners E' H') {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {σ : OneJetBundle I M I' M'} :
    (chartAt (ModelProd (ModelProd H H') (E →L[] E')) σ) '' ((chartAt (ModelProd (ModelProd H H') (E →L[] E')) σ).source immersionRel I M I' M') = (chartAt (ModelProd (ModelProd H H') (E →L[] E')) σ).target {q : ModelProd (ModelProd H H') (E →L[] E') | Function.Injective q.2}
    theorem immersionRel_open {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] (I : ModelWithCorners E H) {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners E' H') {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] [FiniteDimensional E] :
    IsOpen (immersionRel I M I' M')
    @[simp]
    theorem immersionRel_slice_eq {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] (I : ModelWithCorners E H) {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners E' H') {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] {m : M} {m' : M'} {p : DualPair (TangentSpace I m)} {φ : TangentSpace I m →L[] TangentSpace I' m'} ( : Function.Injective φ) :
    (immersionRel I M I' M').slice { proj := (m, m'), snd := φ } p = (↑(Submodule.map φ (LinearMap.ker p.π)))
    theorem immersionRel_open_ample {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] (I : ModelWithCorners E H) {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners E' H') {M' : Type u_6} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] [FiniteDimensional E] [FiniteDimensional E'] (h : Module.finrank E < Module.finrank E') :
    IsOpen (immersionRel I M I' M') (immersionRel I M I' M').Ample

    This is lemma lem:open_ample_immersion from the blueprint.

    theorem immersionRel_satisfiesHPrincipleWith {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] {H : Type u_2} [TopologicalSpace H] (I : ModelWithCorners E H) [I.Boundaryless] (M : Type u_3) [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] [FiniteDimensional E'] {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners E' H') [I'.Boundaryless] (M' : Type u_6) [MetricSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] [FiniteDimensional EP] {HP : Type u_8} [TopologicalSpace HP] (IP : ModelWithCorners EP HP) [IP.Boundaryless] (P : Type u_9) [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] {C : Set (P × M)} {ε : M} [T2Space P] [SigmaCompactSpace P] [T2Space M] [SigmaCompactSpace M] [SigmaCompactSpace M'] (h : Module.finrank E < Module.finrank E') (hC : IsClosed C) (hε_pos : ∀ (x : M), 0 < ε x) (hε_cont : Continuous ε) :

    parametric h-principle for immersions.

    The inclusion and antipodal map on a sphere are immersions: these results are not used directly, but are good sanity checks.

    The inclusion of 𝕊^n into ℝ^{n+1} is an immersion.

    The antipodal map on 𝕊^n ⊆ ℝ^{n+1} is an immersion.

    A formal eversion of a two-sphere into its ambient Euclidean space.

    Equations
    Instances For
      @[simp]
      theorem formalEversion_bs (E : Type u_1) [NormedAddCommGroup E] [InnerProductSpace E] [Fact (Module.finrank E = 3)] (ω : Orientation E (Fin 3)) (t : ) :
      ((formalEversion E ω) t).bs = fun (x : (Metric.sphere 0 1)) => (1 - smoothStep t) x + smoothStep t -x
      theorem formalEversion_zero (E : Type u_1) [NormedAddCommGroup E] [InnerProductSpace E] [Fact (Module.finrank E = 3)] (ω : Orientation E (Fin 3)) (x : (Metric.sphere 0 1)) :
      ((formalEversion E ω) 0).bs x = x
      theorem formalEversion_one (E : Type u_1) [NormedAddCommGroup E] [InnerProductSpace E] [Fact (Module.finrank E = 3)] (ω : Orientation E (Fin 3)) (x : (Metric.sphere 0 1)) :
      ((formalEversion E ω) 1).bs x = -x
      theorem formalEversionHolAtZero (E : Type u_1) [NormedAddCommGroup E] [InnerProductSpace E] [Fact (Module.finrank E = 3)] (ω : Orientation E (Fin 3)) {t : } (ht : t < 1 / 4) :
      theorem formalEversionHolAtOne (E : Type u_1) [NormedAddCommGroup E] [InnerProductSpace E] [Fact (Module.finrank E = 3)] (ω : Orientation E (Fin 3)) {t : } (ht : 3 / 4 < t) :
      theorem contDiff_prod_iff {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] (f : EF × G) (n : ℕ∞) :
      ContDiff 𝕜 (↑n) f ContDiff 𝕜 (↑n) (Prod.fst f) ContDiff 𝕜 (↑n) (Prod.snd f)
      theorem ContDiff.inr {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] (x : E) (n : ℕ∞) :
      ContDiff 𝕜 n fun (p : F) => (x, p)
      theorem ContDiff.uncurry_left' {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] (n : ℕ∞) {f : E × FG} (hf : ContDiff 𝕜 (↑n) f) (x : E) :
      ContDiff 𝕜 n fun (p : F) => f (x, p)
      theorem ContDiff.uncurry_left {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {f : EFG} (n : ℕ∞) (hf : ContDiff 𝕜 n f) (x : E) :
      ContDiff 𝕜 (↑n) (f x)
      theorem ContMDiff.prod_left {𝕜 : Type u_6} [NontriviallyNormedField 𝕜] {E : Type u_7} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_8} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_9} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_10} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_11} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {M' : Type u_12} [MetricSpace M'] [ChartedSpace H' M'] {n : ℕ∞} (x : M) :
      ContMDiff I' (I.prod I') n fun (p : M') => (x, p)
      theorem ContMDiff.uncurry_left {𝕜 : Type u_6} [NontriviallyNormedField 𝕜] {E : Type u_7} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_8} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_9} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_10} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_11} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {M' : Type u_12} [MetricSpace M'] [ChartedSpace H' M'] {EP : Type u_13} [NormedAddCommGroup EP] [NormedSpace 𝕜 EP] {HP : Type u_14} [TopologicalSpace HP] (IP : ModelWithCorners 𝕜 EP HP) {P : Type u_15} [TopologicalSpace P] [ChartedSpace HP P] {n : ℕ∞} {f : MM'P} (hf : ContMDiff (I.prod I') IP n f) (x : M) :
      ContMDiff I' IP (↑n) (f x)
      theorem sphere_eversion (E : Type u_1) [NormedAddCommGroup E] [InnerProductSpace E] [Fact (Module.finrank E = 3)] :
      ∃ (f : (Metric.sphere 0 1)E), ContMDiff ((modelWithCornersSelf ).prod (modelWithCornersSelf (ℝ^2))) (modelWithCornersSelf E) f (f 0 = fun (x : (Metric.sphere 0 1)) => x) (f 1 = fun (x : (Metric.sphere 0 1)) => -x) ∀ (t : ), Immersion (modelWithCornersSelf (ℝ^2)) (modelWithCornersSelf E) (f t)