Documentation

SphereEversion.ToMathlib.Analysis.InnerProductSpace.Rotation

Rotation about an axis, considered as a function in that axis #

A family of endomorphisms of E, parametrized by ℝ × E. The idea is that for nonzero v : E and t : ℝ this endomorphism will be the rotation by the angle t about the axis spanned by v.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    Alternative form of the construction rot, convenient for the smoothness calculation.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem Orientation.contDiff_rot {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [Fact (Module.finrank E = 3)] (ω : Orientation E (Fin 3)) {p : × E} (hp : p.2 0) :

      The map rot is smooth on ℝ × (E \ {0}).

      The map rot sends {0} × E to the identity.

      theorem Orientation.rot_one {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [Fact (Module.finrank E = 3)] (ω : Orientation E (Fin 3)) (v : E) {w : E} (hw : w (Submodule.span {v})) :
      (ω.rot (1, v)) w = -w

      The map rot sends (1, v) to a transformation which on (ℝ ∙ v)ᗮ acts as the negation.

      @[simp]
      theorem Orientation.rot_self {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [Fact (Module.finrank E = 3)] (ω : Orientation E (Fin 3)) (p : × E) :
      (ω.rot p) p.2 = p.2

      The map rot sends (v, t) to a transformation fixing v.

      theorem Orientation.rot_eq_of_mem_span {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [Fact (Module.finrank E = 3)] (ω : Orientation E (Fin 3)) (p : × E) {x : E} (hx : x Submodule.span {p.2}) :
      (ω.rot p) x = x

      The map rot sends (t, v) to a transformation preserving span v.

      theorem Orientation.inner_rot_apply_self {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [Fact (Module.finrank E = 3)] (ω : Orientation E (Fin 3)) (p : × E) (w : E) (hw : w (Submodule.span {p.2})) :
      inner ((ω.rot p) w) p.2 = 0

      The map rot sends (v, t) to a transformation preserving the subspace (ℝ ∙ v)ᗮ.

      theorem Orientation.isometry_on_rot {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [Fact (Module.finrank E = 3)] (ω : Orientation E (Fin 3)) (t : ) (v : (Metric.sphere 0 1)) (w : (Submodule.span {v})) :
      (ω.rot (t, v)) w = w
      theorem Orientation.isometry_rot {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [Fact (Module.finrank E = 3)] (ω : Orientation E (Fin 3)) (t : ) (v : (Metric.sphere 0 1)) :
      Isometry (ω.rot (t, v))
      theorem Orientation.injOn_rot_of_ne {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [Fact (Module.finrank E = 3)] (ω : Orientation E (Fin 3)) (t : ) {x : E} (hx : x 0) :
      theorem Orientation.injOn_rot {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [Fact (Module.finrank E = 3)] (ω : Orientation E (Fin 3)) (t : ) (x : (Metric.sphere 0 1)) :
      Set.InjOn (ω.rot (t, x)) (Submodule.span {x})