Documentation

SphereEversion.ToMathlib.Analysis.ContDiff

def ContinuousLinearMap.blocks {๐•œ : Type uโ‚} [NontriviallyNormedField ๐•œ] {Mโ‚ : Type uโ‚‚} [NormedAddCommGroup Mโ‚] [NormedSpace ๐•œ Mโ‚] {Mโ‚‚ : Type uโ‚ƒ} [NormedAddCommGroup Mโ‚‚] [NormedSpace ๐•œ Mโ‚‚] {Mโ‚ƒ : Type uโ‚„} [NormedAddCommGroup Mโ‚ƒ] [NormedSpace ๐•œ Mโ‚ƒ] {Mโ‚„ : Type uโ‚…} [NormedAddCommGroup Mโ‚„] [NormedSpace ๐•œ Mโ‚„] (A : Mโ‚ โ†’L[๐•œ] Mโ‚ƒ) (B : Mโ‚‚ โ†’L[๐•œ] Mโ‚ƒ) (C : Mโ‚ โ†’L[๐•œ] Mโ‚„) (D : Mโ‚‚ โ†’L[๐•œ] Mโ‚„) :
Mโ‚ ร— Mโ‚‚ โ†’L[๐•œ] Mโ‚ƒ ร— Mโ‚„

Defines continuous linear maps between two products by blocks: given (A : Mโ‚ โ†’L[๐•œ] Mโ‚ƒ), (B : Mโ‚‚ โ†’L[๐•œ] Mโ‚ƒ), (C : Mโ‚ โ†’L[๐•œ] Mโ‚„) and (D : Mโ‚‚ โ†’L[๐•œ] Mโ‚„), construct the continuous linear map with "matrix": A B C D.

Equations
Instances For
    def ContinuousLinearEquiv.lowerTriangular {๐•œ : Type uโ‚} [NontriviallyNormedField ๐•œ] {Mโ‚ : Type uโ‚‚} [NormedAddCommGroup Mโ‚] [NormedSpace ๐•œ Mโ‚] {Mโ‚‚ : Type uโ‚ƒ} [NormedAddCommGroup Mโ‚‚] [NormedSpace ๐•œ Mโ‚‚] {Mโ‚ƒ : Type uโ‚„} [NormedAddCommGroup Mโ‚ƒ] [NormedSpace ๐•œ Mโ‚ƒ] {Mโ‚„ : Type uโ‚…} [NormedAddCommGroup Mโ‚„] [NormedSpace ๐•œ Mโ‚„] (A : Mโ‚ โ‰ƒL[๐•œ] Mโ‚ƒ) (C : Mโ‚ โ†’L[๐•œ] Mโ‚„) (D : Mโ‚‚ โ‰ƒL[๐•œ] Mโ‚„) :
    (Mโ‚ ร— Mโ‚‚) โ‰ƒL[๐•œ] Mโ‚ƒ ร— Mโ‚„

    Given (A : Mโ‚ โ‰ƒL[๐•œ] Mโ‚ƒ), (C : Mโ‚ โ†’L[๐•œ] Mโ‚„) and (D : Mโ‚‚ โ‰ƒL[๐•œ] Mโ‚„), construct the continuous linear equiv with "matrix" A 0 C D.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem ContinuousLinearEquiv.continuous_lowerTriangular {๐•œ : Type uโ‚} [NontriviallyNormedField ๐•œ] {Mโ‚ : Type uโ‚‚} [NormedAddCommGroup Mโ‚] [NormedSpace ๐•œ Mโ‚] {Mโ‚‚ : Type uโ‚ƒ} [NormedAddCommGroup Mโ‚‚] [NormedSpace ๐•œ Mโ‚‚] {Mโ‚ƒ : Type uโ‚„} [NormedAddCommGroup Mโ‚ƒ] [NormedSpace ๐•œ Mโ‚ƒ] {Mโ‚„ : Type uโ‚…} [NormedAddCommGroup Mโ‚„] [NormedSpace ๐•œ Mโ‚„] {X : Type u_1} [TopologicalSpace X] {A : X โ†’ Mโ‚ โ‰ƒL[๐•œ] Mโ‚ƒ} {C : X โ†’ Mโ‚ โ†’L[๐•œ] Mโ‚„} {D : X โ†’ Mโ‚‚ โ‰ƒL[๐•œ] Mโ‚„} (hA : Continuous fun (x : X) => โ†‘(A x)) (hC : Continuous C) (hD : Continuous fun (x : X) => โ†‘(D x)) :
      Continuous fun (x : X) => โ†‘((A x).lowerTriangular (C x) (D x))
      def StrictDifferentiableAt (๐•œ : Type u_1) [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ†’ F) (x : E) :

      The proposition that a function between two normed spaces has a strict derivative at a given point.

      Equations
      Instances For
        def StrictDifferentiable (๐•œ : Type u_1) [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ†’ F) :

        The proposition that a function between two normed spaces has a strict derivative at every point.

        Equations
        Instances For
          theorem StrictDifferentiableAt.differentiableAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {x : E} (h : StrictDifferentiableAt ๐•œ f x) :
          DifferentiableAt ๐•œ f x
          @[simp]
          theorem LinearMap.coprod_comp_inl_inr {R : Type u_5} {M : Type u_6} {Mโ‚‚ : Type u_7} {Mโ‚ƒ : Type u_8} [Semiring R] [AddCommMonoid M] [AddCommMonoid Mโ‚‚] [AddCommMonoid Mโ‚ƒ] [Module R M] [Module R Mโ‚‚] [Module R Mโ‚ƒ] (f : M ร— Mโ‚‚ โ†’โ‚—[R] Mโ‚ƒ) :
          (f โˆ˜โ‚— inl R M Mโ‚‚).coprod (f โˆ˜โ‚— inr R M Mโ‚‚) = f
          @[simp]
          theorem ContinuousLinearMap.coprod_comp_inl_inr {Rโ‚ : Type u_5} [Semiring Rโ‚] {Mโ‚ : Type u_6} [TopologicalSpace Mโ‚] [AddCommMonoid Mโ‚] {Mโ‚‚ : Type u_7} [TopologicalSpace Mโ‚‚] [AddCommMonoid Mโ‚‚] {Mโ‚ƒ : Type u_8} [TopologicalSpace Mโ‚ƒ] [AddCommMonoid Mโ‚ƒ] [Module Rโ‚ Mโ‚] [Module Rโ‚ Mโ‚‚] [Module Rโ‚ Mโ‚ƒ] [ContinuousAdd Mโ‚ƒ] (f : Mโ‚ ร— Mโ‚‚ โ†’L[Rโ‚] Mโ‚ƒ) :
          (f.comp (inl Rโ‚ Mโ‚ Mโ‚‚)).coprod (f.comp (inr Rโ‚ Mโ‚ Mโ‚‚)) = f
          theorem DifferentiableAt.hasFDerivAt_coprod_partial {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {f : E โ†’ F โ†’ G} {x : E} {y : F} (hf : DifferentiableAt ๐•œ (Function.uncurry f) (x, y)) :
          HasFDerivAt (Function.uncurry f) ((partialFDerivFst ๐•œ f x y).coprod (partialFDerivSnd ๐•œ f x y)) (x, y)
          theorem DifferentiableAt.hasFDerivAt_coprod {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {f : E โ†’ F โ†’ G} {x : E} {y : F} (hf : DifferentiableAt ๐•œ (Function.uncurry f) (x, y)) {ฯ† : E โ†’L[๐•œ] G} {ฯˆ : F โ†’L[๐•œ] G} (hฯ† : HasFDerivAt (fun (p : E) => f p y) ฯ† x) (hฯˆ : HasFDerivAt (f x) ฯˆ y) :
          HasFDerivAt (Function.uncurry f) (ฯ†.coprod ฯˆ) (x, y)
          theorem Homeomorph.contDiffAt_symm {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {n : WithTop โ„•โˆž} [CompleteSpace E] (f : E โ‰ƒโ‚œ F) {fโ‚€' : E โ‰ƒL[๐•œ] F} {a : F} (hf' : HasFDerivAt (โ‡‘f) (โ†‘fโ‚€') (f.symm a)) (hf : ContDiffAt ๐•œ n (โ‡‘f) (f.symm a)) :
          ContDiffAt ๐•œ n (โ‡‘f.symm) a
          theorem Equiv.continuous_symm_of_contDiff {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] [CompleteSpace E] (ฯ† : E โ‰ƒ F) {Dฯ† : E โ†’ E โ‰ƒL[๐•œ] F} (hฯ† : โˆ€ (x : E), HasStrictFDerivAt (โ‡‘ฯ†) (โ†‘(Dฯ† x)) x) :
          Continuous โ‡‘ฯ†.symm
          def Equiv.toHomeomorphOfContDiff {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] [CompleteSpace E] (ฯ† : E โ‰ƒ F) {Dฯ† : E โ†’ E โ‰ƒL[๐•œ] F} (hฯ† : โˆ€ (x : E), HasStrictFDerivAt (โ‡‘ฯ†) (โ†‘(Dฯ† x)) x) :

          A bijection that is strictly differentiable at every point is a homeomorphism.

          Equations
          • ฯ†.toHomeomorphOfContDiff hฯ† = { toEquiv := ฯ†, continuous_toFun := โ‹ฏ, continuous_invFun := โ‹ฏ }
          Instances For
            theorem contDiff_parametric_symm {๐•œ : Type u_1} [RCLike ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] [CompleteSpace E] [CompleteSpace F] {f : E โ†’ F โ‰ƒ G} {f' : E โ†’ F โ†’ F โ‰ƒL[๐•œ] G} (hf : ContDiff ๐•œ โ†‘โŠค fun (p : E ร— F) => (f p.1) p.2) (hf' : โˆ€ (x : E) (y : F), partialFDerivSnd ๐•œ (fun (x : E) (y : F) => (f x) y) x y = โ†‘(f' x y)) :
            ContDiff ๐•œ โ†‘โŠค fun (p : E ร— G) => (f p.1).symm p.2
            theorem contDiff_parametric_symm_of_deriv_pos {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] [CompleteSpace E] {f : E โ†’ โ„ โ†’ โ„} (hf : ContDiff โ„ โ†‘โŠค โ†ฟf) (hderiv : โˆ€ (x : E) (t : โ„), 0 < partialDerivSnd f x t) (hsurj : โˆ€ (x : E), Function.Surjective (f x)) :
            ContDiff โ„ โ†‘โŠค fun (p : E ร— โ„) => (StrictMono.orderIsoOfSurjective (f p.1) โ‹ฏ โ‹ฏ).symm p.2
            theorem contDiff_toSpanSingleton (๐•œ : Type u_1) [NontriviallyNormedField ๐•œ] (E : Type u_2) [NormedAddCommGroup E] [NormedSpace ๐•œ E] :
            theorem orthogonalProjection_singleton' {๐•œ : Type u_1} [RCLike ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] [CompleteSpace E] {v : E} :

            The orthogonal projection onto a vector in a real inner product space E, considered as a map from E to E โ†’L[โ„] E, is analytic away from 0.

            theorem ContDiffWithinAt.mul_const {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {๐”ธ : Type u_3} [NormedRing ๐”ธ] [NormedAlgebra ๐•œ ๐”ธ] {n : WithTop โ„•โˆž} {f : E โ†’ ๐”ธ} {s : Set E} {x : E} (hf : ContDiffWithinAt ๐•œ n f s x) {c : ๐”ธ} :
            ContDiffWithinAt ๐•œ n (fun (x : E) => f x * c) s x
            theorem ContDiffAt.mul_const {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {๐”ธ : Type u_3} [NormedRing ๐”ธ] [NormedAlgebra ๐•œ ๐”ธ] {n : WithTop โ„•โˆž} {f : E โ†’ ๐”ธ} {x : E} (hf : ContDiffAt ๐•œ n f x) {c : ๐”ธ} :
            ContDiffAt ๐•œ n (fun (x : E) => f x * c) x
            theorem ContDiffOn.mul_const {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {๐”ธ : Type u_3} [NormedRing ๐”ธ] [NormedAlgebra ๐•œ ๐”ธ] {n : WithTop โ„•โˆž} {f : E โ†’ ๐”ธ} {s : Set E} (hf : ContDiffOn ๐•œ n f s) {c : ๐”ธ} :
            ContDiffOn ๐•œ n (fun (x : E) => f x * c) s
            theorem ContDiff.mul_const {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {๐”ธ : Type u_3} [NormedRing ๐”ธ] [NormedAlgebra ๐•œ ๐”ธ] {n : WithTop โ„•โˆž} {f : E โ†’ ๐”ธ} (hf : ContDiff ๐•œ n f) {c : ๐”ธ} :
            ContDiff ๐•œ n fun (x : E) => f x * c
            theorem contDiffWithinAt_finsum {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {ฮน : Type u_4} {f : ฮน โ†’ E โ†’ F} (lf : LocallyFinite fun (i : ฮน) => Function.support (f i)) {n : WithTop โ„•โˆž} {s : Set E} {xโ‚€ : E} (h : โˆ€ (i : ฮน), ContDiffWithinAt ๐•œ n (f i) s xโ‚€) :
            ContDiffWithinAt ๐•œ n (fun (x : E) => โˆ‘แถ  (i : ฮน), f i x) s xโ‚€
            theorem contDiffAt_finsum {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {ฮน : Type u_4} {f : ฮน โ†’ E โ†’ F} (lf : LocallyFinite fun (i : ฮน) => Function.support (f i)) {n : WithTop โ„•โˆž} {xโ‚€ : E} (h : โˆ€ (i : ฮน), ContDiffAt ๐•œ n (f i) xโ‚€) :
            ContDiffAt ๐•œ n (fun (x : E) => โˆ‘แถ  (i : ฮน), f i x) xโ‚€