Documentation

SphereEversion.Global.Gromov

Gromov's theorem #

We prove the h-principle for open and ample first order differential relations.

theorem RelMfld.Ample.satisfiesHPrinciple {EM : Type u_1} [NormedAddCommGroup EM] [NormedSpace EM] [FiniteDimensional EM] {HM : Type u_2} [TopologicalSpace HM] {IM : ModelWithCorners EM HM} [IM.Boundaryless] {M : Type u_3} [TopologicalSpace M] [ChartedSpace HM M] [IsManifold IM (↑) M] [T2Space M] [SigmaCompactSpace M] {EX : Type u_4} [NormedAddCommGroup EX] [NormedSpace EX] [FiniteDimensional EX] {HX : Type u_5} [TopologicalSpace HX] {IX : ModelWithCorners EX HX} [IX.Boundaryless] {X : Type u_6} [MetricSpace X] [ChartedSpace HX X] [IsManifold IX (↑) X] [SigmaCompactSpace X] {R : RelMfld IM M IX X} {A : Set M} {δ : M} (hRample : R.Ample) (hRopen : IsOpen R) (hA : IsClosed A) (hδ_pos : ∀ (x : M), 0 < δ x) (hδ_cont : Continuous δ) :
theorem RelMfld.Ample.satisfiesHPrincipleWith {EM : Type u_1} [NormedAddCommGroup EM] [NormedSpace EM] [FiniteDimensional EM] {HM : Type u_2} [TopologicalSpace HM] {IM : ModelWithCorners EM HM} [IM.Boundaryless] {M : Type u_3} [TopologicalSpace M] [ChartedSpace HM M] [IsManifold IM (↑) M] [T2Space M] [SigmaCompactSpace M] {EX : Type u_4} [NormedAddCommGroup EX] [NormedSpace EX] [FiniteDimensional EX] {HX : Type u_5} [TopologicalSpace HX] {IX : ModelWithCorners EX HX} [IX.Boundaryless] {X : Type u_6} [MetricSpace X] [ChartedSpace HX X] [IsManifold IX (↑) X] [SigmaCompactSpace X] {R : RelMfld IM M IX X} {δ : M} {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] [FiniteDimensional EP] {HP : Type u_8} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} [IP.Boundaryless] {P : Type u_9} [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] [SigmaCompactSpace P] [T2Space P] {C : Set (P × M)} (hRample : R.Ample) (hRopen : IsOpen R) (hC : IsClosed C) (hδ_pos : ∀ (x : M), 0 < δ x) (hδ_cont : Continuous δ) :

Gromov's Theorem

theorem RelMfld.Ample.satisfiesHPrincipleWith' {EM : Type u_1} [NormedAddCommGroup EM] [NormedSpace EM] [FiniteDimensional EM] {HM : Type u_2} [TopologicalSpace HM] {IM : ModelWithCorners EM HM} [IM.Boundaryless] {M : Type u_3} [TopologicalSpace M] [ChartedSpace HM M] [IsManifold IM (↑) M] [T2Space M] [SigmaCompactSpace M] {δ : M} {EP : Type u_7} [NormedAddCommGroup EP] [NormedSpace EP] [FiniteDimensional EP] {HP : Type u_8} [TopologicalSpace HP] {IP : ModelWithCorners EP HP} [IP.Boundaryless] {P : Type u_9} [TopologicalSpace P] [ChartedSpace HP P] [IsManifold IP (↑) P] [SigmaCompactSpace P] [T2Space P] {C : Set (P × M)} {E' : Type u_10} [NormedAddCommGroup E'] [NormedSpace E'] [FiniteDimensional E'] {H' : Type u_11} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} [I'.Boundaryless] {M' : Type u_12} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] [SigmaCompactSpace M'] [T2Space M'] {R : RelMfld IM M I' M'} (hRample : R.Ample) (hRopen : IsOpen R) (hC : IsClosed C) (hδ_pos : ∀ (x : M), 0 < δ x) (hδ_cont : Continuous δ) :

Gromov's Theorem without metric space assumption