Documentation

SphereEversion.ToMathlib.ExistsOfConvex

theorem exists_of_convex {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] [SigmaCompactSpace M] [T2Space M] {F : Type u_5} [AddCommGroup F] [Module F] {P : (x : M) × (nhds x).Germ FProp} (hP : ∀ (x : M), ReallyConvex (smoothGerm I x) {φ : (nhds x).Germ F | P x, φ}) (hP' : ∀ (x : M), ∃ (f : MF), ∀ᶠ (x' : M) in nhds x, P x', f) :
∃ (f : MF), ∀ (x : M), P x, f
theorem exists_contMDiff_of_convex {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] [SigmaCompactSpace M] [T2Space M] {F : Type u_5} [NormedAddCommGroup F] [NormedSpace F] {P : MFProp} (hP : ∀ (x : M), Convex {y : F | P x y}) {n : ℕ∞} (hP' : ∀ (x : M), Unhds x, ∃ (f : MF), ContMDiffOn I (modelWithCornersSelf F) (↑n) f U xU, P x (f x)) :
∃ (f : MF), ContMDiff I (modelWithCornersSelf F) (↑n) f ∀ (x : M), P x (f x)
theorem exists_contDiff_of_convex {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] {F : Type u_5} [NormedAddCommGroup F] [NormedSpace F] {P : EFProp} (hP : ∀ (x : E), Convex {y : F | P x y}) {n : ℕ∞} (hP' : ∀ (x : E), Unhds x, ∃ (f : EF), ContDiffOn (↑n) f U xU, P x (f x)) :
∃ (f : EF), ContDiff (↑n) f ∀ (x : E), P x (f x)
theorem reallyConvex_contMDiffAtProd {E₁ : Type u_1} {E₂ : Type u_2} {F : Type u_3} [NormedAddCommGroup E₁] [NormedSpace E₁] [NormedAddCommGroup E₂] [NormedSpace E₂] [NormedAddCommGroup F] [NormedSpace F] {H₁ : Type u_4} {M₁ : Type u_5} {H₂ : Type u_6} {M₂ : Type u_7} [TopologicalSpace H₁] (I₁ : ModelWithCorners E₁ H₁) [TopologicalSpace M₁] [ChartedSpace H₁ M₁] [TopologicalSpace H₂] (I₂ : ModelWithCorners E₂ H₂) [TopologicalSpace M₂] [ChartedSpace H₂ M₂] {x : M₁} (n : ℕ∞) :
ReallyConvex (smoothGerm I₁ x) {φ : (nhds x).Germ (M₂F) | Filter.Germ.ContMDiffAtProd I₁ I₂ φ n}
theorem exists_contMDiff_of_convex₂ {E₁ : Type u_1} {E₂ : Type u_2} {F : Type u_3} [NormedAddCommGroup E₁] [NormedSpace E₁] [FiniteDimensional E₁] [NormedAddCommGroup E₂] [NormedSpace E₂] [NormedAddCommGroup F] [NormedSpace F] {H₁ : Type u_4} {M₁ : Type u_5} {H₂ : Type u_6} {M₂ : Type u_7} [TopologicalSpace H₁] (I₁ : ModelWithCorners E₁ H₁) [TopologicalSpace M₁] [ChartedSpace H₁ M₁] [IsManifold I₁ (↑) M₁] [TopologicalSpace H₂] (I₂ : ModelWithCorners E₂ H₂) [TopologicalSpace M₂] [ChartedSpace H₂ M₂] {P : M₁(M₂F)Prop} [SigmaCompactSpace M₁] [T2Space M₁] (hP : ∀ (x : M₁), Convex {f : M₂F | P x f}) {n : ℕ∞} (hP' : ∀ (x : M₁), Unhds x, ∃ (f : M₁M₂F), ContMDiffOn (I₁.prod I₂) (modelWithCornersSelf F) (↑n) (Function.uncurry f) (U ×ˢ Set.univ) yU, P y (f y)) :
∃ (f : M₁M₂F), ContMDiff (I₁.prod I₂) (modelWithCornersSelf F) (↑n) (Function.uncurry f) ∀ (x : M₁), P x (f x)
theorem exists_contDiff_of_convex₂ {E₁ : Type u_1} {E₂ : Type u_2} {F : Type u_3} [NormedAddCommGroup E₁] [NormedSpace E₁] [FiniteDimensional E₁] [NormedAddCommGroup E₂] [NormedSpace E₂] [NormedAddCommGroup F] [NormedSpace F] {P : E₁(E₂F)Prop} (hP : ∀ (x : E₁), Convex {f : E₂F | P x f}) {n : ℕ∞} (hP' : ∀ (x : E₁), Unhds x, ∃ (f : E₁E₂F), ContDiffOn (↑n) (Function.uncurry f) (U ×ˢ Set.univ) yU, P y (f y)) :
∃ (f : E₁E₂F), ContDiff (↑n) (Function.uncurry f) ∀ (x : E₁), P x (f x)
theorem convex_setOf_imp_eq {F : Type u_5} [NormedAddCommGroup F] [NormedSpace F] (P : Prop) (y : F) :
Convex {x : F | Px = y}
theorem exists_smooth_and_eqOn {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] {F : Type u_5} [NormedAddCommGroup F] [NormedSpace F] {n : ℕ∞} {f : EF} {ε : E} (hf : Continuous f) ( : Continuous ε) (h2ε : ∀ (x : E), 0 < ε x) {s : Set E} (hs : IsClosed s) (hfs : UnhdsSet s, ContDiffOn (↑n) f U) :
∃ (f' : EF), ContDiff (↑n) f' (∀ (x : E), dist (f' x) (f x) < ε x) Set.EqOn f' f s