The category of bialgebras over a commutative ring #
We introduce the bundled category BialgebraCat
of bialgebras over a fixed commutative ring R
along with the forgetful functors to CoalgebraCat
and AlgebraCat
.
This file mimics Mathlib.LinearAlgebra.QuadraticForm.QuadraticModuleCat
.
Equations
- BialgebraCat.instCoeSortType = { coe := fun (x : BialgebraCat R) => x.carrier }
The object in the category of R
-bialgebras associated to an R
-bialgebra.
Equations
- BialgebraCat.of R X = BialgebraCat.mk X
Instances For
theorem
BialgebraCat.Hom.ext
{R : Type u}
{inst✝ : CommRing R}
{V W : BialgebraCat R}
{x y : V.Hom W}
(toBialgHom' : x.toBialgHom' = y.toBialgHom')
:
Equations
instance
BialgebraCat.concreteCategory
{R : Type u}
[CommRing R]
:
CategoryTheory.ConcreteCategory (BialgebraCat R) fun (x1 x2 : BialgebraCat R) => x1.carrier →ₐc[R] x2.carrier
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Turn a morphism in BialgebraCat
back into a BialgHom
.
Equations
Instances For
theorem
BialgebraCat.hom_ext
{R : Type u}
[CommRing R]
{X Y : BialgebraCat R}
(f g : X ⟶ Y)
(h : Hom.toBialgHom f = Hom.toBialgHom g)
:
@[simp]
theorem
BialgebraCat.toBialgHom_comp
{R : Type u}
[CommRing R]
{X Y Z : BialgebraCat R}
(f : X ⟶ Y)
(g : Y ⟶ Z)
:
@[simp]
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
@[simp]
@[simp]
theorem
BialgebraCat.forget₂_algebra_map
{R : Type u}
[CommRing R]
(X Y : BialgebraCat R)
(f : X ⟶ Y)
:
(CategoryTheory.forget₂ (BialgebraCat R) (AlgebraCat R)).map f = AlgebraCat.ofHom ↑(Hom.toBialgHom f)
Equations
- One or more equations did not get rendered due to their size.
@[simp]
@[simp]
theorem
BialgebraCat.forget₂_coalgebra_map
{R : Type u}
[CommRing R]
(X Y : BialgebraCat R)
(f : X ⟶ Y)
:
(CategoryTheory.forget₂ (BialgebraCat R) (CoalgebraCat R)).map f = CoalgebraCat.ofHom ↑(Hom.toBialgHom f)
def
BialgEquiv.toBialgebraCatIso
{R : Type u}
[CommRing R]
{X Y : Type v}
[Ring X]
[Ring Y]
[Bialgebra R X]
[Bialgebra R Y]
(e : X ≃ₐc[R] Y)
:
Build an isomorphism in the category BialgebraCat R
from a
BialgEquiv
.
Equations
- e.toBialgebraCatIso = { hom := BialgebraCat.ofHom ↑e, inv := BialgebraCat.ofHom ↑e.symm, hom_inv_id := ⋯, inv_hom_id := ⋯ }
Instances For
Build a BialgEquiv
from an isomorphism in the category
BialgebraCat R
.
Equations
- i.toBialgEquiv = { toCoalgHom := (BialgebraCat.Hom.toBialgHom i.hom).toCoalgHom, invFun := ⇑(BialgebraCat.Hom.toBialgHom i.inv), left_inv := ⋯, right_inv := ⋯, map_mul' := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.Iso.toBialgEquiv_toBialgHom
{R : Type u}
[CommRing R]
{X Y : BialgebraCat R}
(i : X ≅ Y)
:
@[simp]
@[simp]
theorem
CategoryTheory.Iso.toBialgEquiv_symm
{R : Type u}
[CommRing R]
{X Y : BialgebraCat R}
(e : X ≅ Y)
:
@[simp]
theorem
CategoryTheory.Iso.toBialgEquiv_trans
{R : Type u}
[CommRing R]
{X Y Z : BialgebraCat R}
(e : X ≅ Y)
(f : Y ≅ Z)
: