Documentation

Mathlib.Algebra.Category.BialgebraCat.Basic

The category of bialgebras over a commutative ring #

We introduce the bundled category BialgebraCat of bialgebras over a fixed commutative ring R along with the forgetful functors to CoalgebraCat and AlgebraCat.

This file mimics Mathlib.LinearAlgebra.QuadraticForm.QuadraticModuleCat.

structure BialgebraCat (R : Type u) [CommRing R] :
Type (max u (v + 1))

The category of R-bialgebras.

  • carrier : Type v

    The underlying type.

  • instRing : Ring self.carrier
  • instBialgebra : Bialgebra R self.carrier
Instances For
    Equations
    def BialgebraCat.of (R : Type u) [CommRing R] (X : Type v) [Ring X] [Bialgebra R X] :

    The object in the category of R-bialgebras associated to an R-bialgebra.

    Equations
    Instances For
      @[simp]
      theorem BialgebraCat.of_instBialgebra (R : Type u) [CommRing R] (X : Type v) [Ring X] [Bialgebra R X] :
      (of R X).instBialgebra = inst✝
      @[simp]
      theorem BialgebraCat.of_instRing (R : Type u) [CommRing R] (X : Type v) [Ring X] [Bialgebra R X] :
      (of R X).instRing = inst✝
      @[simp]
      theorem BialgebraCat.of_carrier (R : Type u) [CommRing R] (X : Type v) [Ring X] [Bialgebra R X] :
      (of R X).carrier = X
      structure BialgebraCat.Hom {R : Type u} [CommRing R] (V W : BialgebraCat R) :

      A type alias for BialgHom to avoid confusion between the categorical and algebraic spellings of composition.

      Instances For
        theorem BialgebraCat.Hom.ext {R : Type u} {inst✝ : CommRing R} {V W : BialgebraCat R} {x y : V.Hom W} (toBialgHom : x.toBialgHom = y.toBialgHom) :
        x = y
        theorem BialgebraCat.hom_ext {R : Type u} [CommRing R] {X Y : BialgebraCat R} (f g : X Y) (h : f.toBialgHom = g.toBialgHom) :
        f = g
        @[reducible, inline]
        abbrev BialgebraCat.ofHom {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [Bialgebra R X] [Bialgebra R Y] (f : X →ₐc[R] Y) :
        of R X of R Y

        Typecheck a BialgHom as a morphism in BialgebraCat R.

        Equations
        Instances For
          @[simp]
          theorem BialgebraCat.toBialgHom_comp {R : Type u} [CommRing R] {X Y Z : BialgebraCat R} (f : X Y) (g : Y Z) :
          (CategoryTheory.CategoryStruct.comp f g).toBialgHom = g.toBialgHom.comp f.toBialgHom
          @[simp]
          Equations
          • One or more equations did not get rendered due to their size.
          Equations
          • One or more equations did not get rendered due to their size.
          @[simp]
          Equations
          • One or more equations did not get rendered due to their size.
          def BialgEquiv.toBialgebraCatIso {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [Bialgebra R X] [Bialgebra R Y] (e : X ≃ₐc[R] Y) :

          Build an isomorphism in the category BialgebraCat R from a BialgEquiv.

          Equations
          Instances For
            @[simp]
            theorem BialgEquiv.toBialgebraCatIso_hom_toBialgHom {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [Bialgebra R X] [Bialgebra R Y] (e : X ≃ₐc[R] Y) :
            e.toBialgebraCatIso.hom.toBialgHom = e
            @[simp]
            theorem BialgEquiv.toBialgebraCatIso_inv_toBialgHom {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [Bialgebra R X] [Bialgebra R Y] (e : X ≃ₐc[R] Y) :
            e.toBialgebraCatIso.inv.toBialgHom = e.symm
            @[simp]
            theorem BialgEquiv.toBialgebraCatIso_refl {R : Type u} [CommRing R] {X : Type v} [Ring X] [Bialgebra R X] :
            (refl R X).toBialgebraCatIso = CategoryTheory.Iso.refl (BialgebraCat.of R X)
            @[simp]
            theorem BialgEquiv.toBialgebraCatIso_symm {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [Bialgebra R X] [Bialgebra R Y] (e : X ≃ₐc[R] Y) :
            e.symm.toBialgebraCatIso = e.toBialgebraCatIso.symm
            @[simp]
            theorem BialgEquiv.toBialgebraCatIso_trans {R : Type u} [CommRing R] {X Y Z : Type v} [Ring X] [Ring Y] [Ring Z] [Bialgebra R X] [Bialgebra R Y] [Bialgebra R Z] (e : X ≃ₐc[R] Y) (f : Y ≃ₐc[R] Z) :
            (e.trans f).toBialgebraCatIso = e.toBialgebraCatIso ≪≫ f.toBialgebraCatIso
            def CategoryTheory.Iso.toBialgEquiv {R : Type u} [CommRing R] {X Y : BialgebraCat R} (i : X Y) :
            X.carrier ≃ₐc[R] Y.carrier

            Build a BialgEquiv from an isomorphism in the category BialgebraCat R.

            Equations
            • i.toBialgEquiv = { toCoalgHom := i.hom.toBialgHom.toCoalgHom, invFun := i.inv.toBialgHom, left_inv := , right_inv := , map_mul' := }
            Instances For
              @[simp]
              theorem CategoryTheory.Iso.toBialgEquiv_toBialgHom {R : Type u} [CommRing R] {X Y : BialgebraCat R} (i : X Y) :
              i.toBialgEquiv = i.hom.toBialgHom
              @[simp]
              theorem CategoryTheory.Iso.toBialgEquiv_refl {R : Type u} [CommRing R] {X : BialgebraCat R} :
              (refl X).toBialgEquiv = BialgEquiv.refl R X.carrier
              @[simp]
              theorem CategoryTheory.Iso.toBialgEquiv_symm {R : Type u} [CommRing R] {X Y : BialgebraCat R} (e : X Y) :
              e.symm.toBialgEquiv = e.toBialgEquiv.symm
              @[simp]
              theorem CategoryTheory.Iso.toBialgEquiv_trans {R : Type u} [CommRing R] {X Y Z : BialgebraCat R} (e : X Y) (f : Y Z) :
              (e ≪≫ f).toBialgEquiv = e.toBialgEquiv.trans f.toBialgEquiv