Documentation

Mathlib.Algebra.Category.HopfAlgCat.Basic

The category of Hopf algebras over a commutative ring #

We introduce the bundled category HopfAlgCat of Hopf algebras over a fixed commutative ring R along with the forgetful functor to BialgCat.

This file mimics Mathlib.LinearAlgebra.QuadraticForm.QuadraticModuleCat.

structure HopfAlgCat (R : Type u) [CommRing R] :
Type (max u (v + 1))

The category of R-Hopf algebras.

Instances For
    @[reducible, inline]
    abbrev HopfAlgCat.of (R : Type u) [CommRing R] (X : Type v) [Ring X] [HopfAlgebra R X] :

    The object in the category of R-Hopf algebras associated to an R-Hopf algebra.

    Equations
    • HopfAlgCat.of R X = { carrier := X, instRing := inst✝¹, instHopfAlgebra := inst✝ }
    Instances For
      structure HopfAlgCat.Hom {R : Type u} [CommRing R] (V W : HopfAlgCat R) :

      A type alias for BialgHom to avoid confusion between the categorical and algebraic spellings of composition.

      Instances For
        theorem HopfAlgCat.Hom.ext_iff {R : Type u} {inst✝ : CommRing R} {V W : HopfAlgCat R} {x y : V.Hom W} :
        theorem HopfAlgCat.Hom.ext {R : Type u} {inst✝ : CommRing R} {V W : HopfAlgCat R} {x y : V.Hom W} (toBialgHom' : x.toBialgHom' = y.toBialgHom') :
        x = y
        Equations
        • One or more equations did not get rendered due to their size.
        Equations
        • One or more equations did not get rendered due to their size.
        @[reducible, inline]
        abbrev HopfAlgCat.Hom.toBialgHom {R : Type u} [CommRing R] {X Y : HopfAlgCat R} (f : X.Hom Y) :

        Turn a morphism in HopfAlgCat back into a BialgHom.

        Equations
        Instances For
          @[reducible, inline]
          abbrev HopfAlgCat.ofHom {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [HopfAlgebra R X] [HopfAlgebra R Y] (f : X →ₐc[R] Y) :
          of R X of R Y

          Typecheck a BialgHom as a morphism in HopfAlgCat R.

          Equations
          Instances For
            theorem HopfAlgCat.hom_ext {R : Type u} [CommRing R] {X Y : HopfAlgCat R} (f g : X Y) (h : Hom.toBialgHom f = Hom.toBialgHom g) :
            f = g
            theorem HopfAlgCat.hom_ext_iff {R : Type u} [CommRing R] {X Y : HopfAlgCat R} {f g : X Y} :
            Equations
            • One or more equations did not get rendered due to their size.
            def BialgEquiv.toHopfAlgIso {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [HopfAlgebra R X] [HopfAlgebra R Y] (e : X ≃ₐc[R] Y) :

            Build an isomorphism in the category HopfAlgCat R from a BialgEquiv.

            Equations
            Instances For
              @[simp]
              theorem BialgEquiv.toHopfAlgIso_inv {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [HopfAlgebra R X] [HopfAlgebra R Y] (e : X ≃ₐc[R] Y) :
              @[simp]
              theorem BialgEquiv.toHopfAlgIso_hom {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [HopfAlgebra R X] [HopfAlgebra R Y] (e : X ≃ₐc[R] Y) :
              @[simp]
              theorem BialgEquiv.toHopfAlgIso_symm {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [HopfAlgebra R X] [HopfAlgebra R Y] (e : X ≃ₐc[R] Y) :
              @[simp]
              theorem BialgEquiv.toHopfAlgIso_trans {R : Type u} [CommRing R] {X Y Z : Type v} [Ring X] [Ring Y] [Ring Z] [HopfAlgebra R X] [HopfAlgebra R Y] [HopfAlgebra R Z] (e : X ≃ₐc[R] Y) (f : Y ≃ₐc[R] Z) :

              Build a BialgEquiv from an isomorphism in the category HopfAlgCat R.

              Equations
              Instances For