Localized Module in ModuleCat #
For a ring R satisfying [Small.{v} R] and a submonoid S of R,
this file defines an exact functor ModuleCat.{v} R ⥤ ModuleCat.{v} (Localization S),
see ModuleCat.localizedModuleFunctor.
theorem
instSmallLocalizedModule
(R : Type u)
[CommRing R]
[Small.{v, u} R]
(M : Type v)
[AddCommGroup M]
[Module R M]
(S : Submonoid R)
:
noncomputable def
ModuleCat.localizedModule
{R : Type u}
[CommRing R]
[Small.{v, u} R]
(M : ModuleCat R)
(S : Submonoid R)
:
Shrink of LocalizedModule S M in category which M belongs.
Equations
- M.localizedModule S = ModuleCat.of (Localization S) (Shrink.{?u.23, max ?u.23 ?u.22} (LocalizedModule S ↑M))
Instances For
noncomputable instance
ModuleCat.instModuleCarrierLocalizationLocalizedModule
{R : Type u}
[CommRing R]
[Small.{v, u} R]
(M : ModuleCat R)
(S : Submonoid R)
:
Module R ↑(M.localizedModule S)
The R module structure on M.localizedModule S given by the
R module structure on Shrink.{v} (LocalizedModule S M)
Equations
instance
ModuleCat.instIsScalarTowerLocalizationCarrierLocalizedModule
{R : Type u}
[CommRing R]
[Small.{v, u} R]
(M : ModuleCat R)
(S : Submonoid R)
:
IsScalarTower R (Localization S) ↑(M.localizedModule S)
noncomputable def
ModuleCat.localizedModuleMkLinearMap
{R : Type u}
[CommRing R]
[Small.{v, u} R]
(M : ModuleCat R)
(S : Submonoid R)
:
The linear map M →ₗ[R] (M.localizedModule S) which
exhibits M.localizedModule S as a localized module of M.
Equations
- M.localizedModuleMkLinearMap S = ↑(Shrink.linearEquiv R (LocalizedModule S ↑M)).symm ∘ₗ LocalizedModule.mkLinearMap S ↑M
Instances For
instance
ModuleCat.localizedModule_isLocalizedModule
{R : Type u}
[CommRing R]
[Small.{v, u} R]
(M : ModuleCat R)
(S : Submonoid R)
:
noncomputable def
ModuleCat.localizedModuleMap
{R : Type u}
[CommRing R]
[Small.{v, u} R]
{M N : ModuleCat R}
(S : Submonoid R)
(f : M ⟶ N)
:
IsLocalizedModule.mapExtendScalars as a morphism in ModuleCat.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
ModuleCat.localizedModuleMap_hom_apply
{R : Type u}
[CommRing R]
[Small.{v, u} R]
{M N : ModuleCat R}
(S : Submonoid R)
(f : M ⟶ N)
(a : ↑(M.localizedModule S))
:
(Hom.hom (localizedModuleMap S f)) a = ((IsLocalizedModule.map S (M.localizedModuleMkLinearMap S) (N.localizedModuleMkLinearMap S)) (Hom.hom f)) a
noncomputable def
ModuleCat.localizedModule_functor
{R : Type u}
[CommRing R]
[Small.{v, u} R]
(S : Submonoid R)
:
CategoryTheory.Functor (ModuleCat R) (ModuleCat (Localization S))
The functor ModuleCat.{v} R ⥤ ModuleCat.{v} (Localization S) sending
M to M.localizedModule S and f : M1 ⟶ M2 to
IsLocalizedModule.mapExtendScalars S _ _ (Localization S) f.hom.
Equations
- ModuleCat.localizedModule_functor S = { obj := fun (M : ModuleCat R) => M.localizedModule S, map := fun {X Y : ModuleCat R} => ModuleCat.localizedModuleMap S, map_id := ⋯, map_comp := ⋯ }
Instances For
@[simp]
theorem
ModuleCat.localizedModule_functor_obj
{R : Type u}
[CommRing R]
[Small.{v, u} R]
(S : Submonoid R)
(M : ModuleCat R)
:
@[simp]
theorem
ModuleCat.localizedModule_functor_map
{R : Type u}
[CommRing R]
[Small.{v, u} R]
(S : Submonoid R)
{X✝ Y✝ : ModuleCat R}
(f : X✝ ⟶ Y✝)
:
instance
ModuleCat.instAdditiveLocalizationLocalizedModule_functor
{R : Type u}
[CommRing R]
[Small.{v, u} R]
(S : Submonoid R)
:
theorem
ModuleCat.localizedModule_functor_map_exact
{R : Type u}
[CommRing R]
[Small.{v, u} R]
(S : Submonoid R)
(T : CategoryTheory.ShortComplex (ModuleCat R))
(h : T.Exact)
:
(T.map (localizedModule_functor S)).Exact
instance
ModuleCat.instPreservesFiniteLimitsLocalizationLocalizedModule_functor
{R : Type u}
[CommRing R]
[Small.{v, u} R]
(S : Submonoid R)
: