Documentation

Mathlib.Algebra.Category.ModuleCat.Localization

Localized Module in ModuleCat #

For a ring R satisfying [Small.{v} R] and a submonoid S of R, this file defines an exact functor ModuleCat.{v} R ⥤ ModuleCat.{v} (Localization S), see ModuleCat.localizedModuleFunctor.

noncomputable def ModuleCat.localizedModule {R : Type u} [CommRing R] [Small.{v, u} R] (M : ModuleCat R) (S : Submonoid R) :

Shrink of LocalizedModule S M in category which M belongs.

Equations
Instances For

    The R module structure on M.localizedModule S given by the R module structure on Shrink.{v} (LocalizedModule S M)

    Equations
    noncomputable def ModuleCat.localizedModuleMkLinearMap {R : Type u} [CommRing R] [Small.{v, u} R] (M : ModuleCat R) (S : Submonoid R) :
    M →ₗ[R] (M.localizedModule S)

    The linear map M →ₗ[R] (M.localizedModule S) which exhibits M.localizedModule S as a localized module of M.

    Equations
    Instances For
      noncomputable def ModuleCat.localizedModuleMap {R : Type u} [CommRing R] [Small.{v, u} R] {M N : ModuleCat R} (S : Submonoid R) (f : M N) :

      IsLocalizedModule.mapExtendScalars as a morphism in ModuleCat.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The functor ModuleCat.{v} R ⥤ ModuleCat.{v} (Localization S) sending M to M.localizedModule S and f : M1 ⟶ M2 to IsLocalizedModule.mapExtendScalars S _ _ (Localization S) f.hom.

        Equations
        Instances For
          @[simp]
          theorem ModuleCat.localizedModule_functor_map {R : Type u} [CommRing R] [Small.{v, u} R] (S : Submonoid R) {X✝ Y✝ : ModuleCat R} (f : X✝ Y✝) :