Documentation

Mathlib.Algebra.Category.ModuleCat.Sheaf.PullbackContinuous

Pullback of sheaves of modules #

Let S and R be sheaves of rings over sites (C, J) and (D, K) respectively. Let F : C ⥤ D be a continuous functor between these sites, and let φ : S ⟶ (F.sheafPushforwardContinuous RingCat.{u} J K).obj R be a morphism of sheaves of rings.

In this file, we define the pullback functor for sheaves of modules pullback.{v} φ : SheafOfModules.{v} S ⥤ SheafOfModules.{v} R that is left adjoint to pushforward.{v} φ. We show that it exists under suitable assumptions, and prove that the pullback of (pre)sheaves of modules commutes with the sheafification.

From the compatibility of pushforward with respect to composition, we deduce similar pseudofunctor-like properties of the pullback functors.

The pullback functor SheafOfModules S ⥤ SheafOfModules R induced by a morphism of sheaves of rings S ⟶ (F.sheafPushforwardContinuous RingCat.{u} J K).obj R, defined as the left adjoint functor to the pushforward, when it exists.

Equations
Instances For

    Given a continuous functor between sites F, and a morphism of sheaves of rings S ⟶ (F.sheafPushforwardContinuous RingCat.{u} J K).obj R, this is the adjunction between the corresponding pullback and pushforward functors on the categories of sheaves of modules.

    Equations
    Instances For

      Construction of a left adjoint to the functor pushforward.{v} φ by using the pullback of presheaves of modules and the sheafification.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The composition of two pullback functors on sheaves of modules identifies to the pullback for the composition.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem SheafOfModules.pullback_assoc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] {D' : Type u₃} [CategoryTheory.Category.{v₃, u₃} D'] {D'' : Type u₄} [CategoryTheory.Category.{v₄, u₄} D''] {J : CategoryTheory.GrothendieckTopology C} {K : CategoryTheory.GrothendieckTopology D} {F : CategoryTheory.Functor C D} {S : CategoryTheory.Sheaf J RingCat} {R : CategoryTheory.Sheaf K RingCat} [F.IsContinuous J K] [F.IsContinuous J K] (φ : S (F.sheafPushforwardContinuous RingCat J K).obj R) [(pushforward φ).IsRightAdjoint] {K' : CategoryTheory.GrothendieckTopology D'} {K'' : CategoryTheory.GrothendieckTopology D''} {G : CategoryTheory.Functor D D'} {R' : CategoryTheory.Sheaf K' RingCat} [G.IsContinuous K K'] [G.IsContinuous K K'] [(F.comp G).IsContinuous J K'] [(F.comp G).IsContinuous J K'] (ψ : R (G.sheafPushforwardContinuous RingCat K K').obj R') [(pushforward ψ).IsRightAdjoint] {G' : CategoryTheory.Functor D' D''} {R'' : CategoryTheory.Sheaf K'' RingCat} [G'.IsContinuous K' K''] [G'.IsContinuous K' K''] [(G.comp G').IsContinuous K K''] [(G.comp G').IsContinuous K K''] [((F.comp G).comp G').IsContinuous J K''] [((F.comp G).comp G').IsContinuous J K''] [(F.comp (G.comp G')).IsContinuous J K''] [(F.comp (G.comp G')).IsContinuous J K''] (ψ' : R' (G'.sheafPushforwardContinuous RingCat K' K'').obj R'') [(pushforward ψ').IsRightAdjoint] :