Documentation

Mathlib.Algebra.Group.Subgroup.ZPowers.Lemmas

Subgroups generated by an element #

Tags #

subgroup, subgroups

@[simp]
theorem Subgroup.range_zpowersHom {G : Type u_1} [Group G] (g : G) :
@[simp]
@[simp]
theorem AddSubgroup.intCast_mul_mem_zmultiples {R : Type u_4} [Ring R] (r : R) (k : ) :
k * r zmultiples r
@[simp]
theorem Subgroup.centralizer_closure {G : Type u_1} [Group G] (S : Set G) :
centralizer (closure S) = gS, centralizer (zpowers g)
theorem AddSubgroup.centralizer_closure {G : Type u_1} [AddGroup G] (S : Set G) :
centralizer (closure S) = gS, centralizer (zmultiples g)
theorem Subgroup.center_eq_iInf {G : Type u_1} [Group G] (S : Set G) (hS : closure S = ) :
center G = gS, centralizer (zpowers g)
theorem AddSubgroup.center_eq_iInf {G : Type u_1} [AddGroup G] (S : Set G) (hS : closure S = ) :
center G = gS, centralizer (zmultiples g)
theorem Subgroup.center_eq_infi' {G : Type u_1} [Group G] (S : Set G) (hS : closure S = ) :
center G = ⨅ (g : S), centralizer (zpowers g)
theorem AddSubgroup.center_eq_infi' {G : Type u_1} [AddGroup G] (S : Set G) (hS : closure S = ) :
center G = ⨅ (g : S), centralizer (zmultiples g)