@[simp]
theorem
Subgroup.range_zpowersHom
{G : Type u_1}
[Group G]
(g : G)
:
((zpowersHom G) g).range = zpowers g
instance
AddSubgroup.instCountableSubtypeMemZmultiples
{G : Type u_1}
[AddGroup G]
(a : G)
:
Countable ↥(zmultiples a)
@[simp]
theorem
AddSubgroup.range_zmultiplesHom
{A : Type u_2}
[AddGroup A]
(a : A)
:
((zmultiplesHom A) a).range = zmultiples a
@[simp]
theorem
AddSubgroup.intCast_mul_mem_zmultiples
{R : Type u_4}
[Ring R]
(r : R)
(k : ℤ)
:
↑k * r ∈ zmultiples r
@[deprecated AddSubgroup.intCast_mul_mem_zmultiples (since := "2024-04-17")]
theorem
AddSubgroup.int_cast_mul_mem_zmultiples
{R : Type u_4}
[Ring R]
(r : R)
(k : ℤ)
:
↑k * r ∈ zmultiples r
Alias of AddSubgroup.intCast_mul_mem_zmultiples
.
@[simp]
@[deprecated AddSubgroup.intCast_mem_zmultiples_one (since := "2024-04-17")]
Alias of AddSubgroup.intCast_mem_zmultiples_one
.
@[simp]
theorem
Int.range_castAddHom
{A : Type u_4}
[AddGroupWithOne A]
:
(castAddHom A).range = AddSubgroup.zmultiples 1
theorem
Subgroup.centralizer_closure
{G : Type u_1}
[Group G]
(S : Set G)
:
centralizer ↑(closure S) = ⨅ g ∈ S, centralizer ↑(zpowers g)
theorem
AddSubgroup.centralizer_closure
{G : Type u_1}
[AddGroup G]
(S : Set G)
:
centralizer ↑(closure S) = ⨅ g ∈ S, centralizer ↑(zmultiples g)
theorem
AddSubgroup.center_eq_iInf
{G : Type u_1}
[AddGroup G]
(S : Set G)
(hS : closure S = ⊤)
:
center G = ⨅ g ∈ S, centralizer ↑(zmultiples g)
theorem
AddSubgroup.center_eq_infi'
{G : Type u_1}
[AddGroup G]
(S : Set G)
(hS : closure S = ⊤)
:
center G = ⨅ (g : ↑S), centralizer ↑(zmultiples ↑g)