Documentation

Mathlib.Algebra.Group.Subgroup.ZPowers.Lemmas

Subgroups generated by an element #

Tags #

subgroup, subgroups

@[simp]
theorem Subgroup.range_zpowersHom {G : Type u_1} [Group G] (g : G) :
((zpowersHom G) g).range = zpowers g
@[simp]
theorem AddSubgroup.range_zmultiplesHom {A : Type u_2} [AddGroup A] (a : A) :
((zmultiplesHom A) a).range = zmultiples a
@[simp]
theorem AddSubgroup.intCast_mul_mem_zmultiples {R : Type u_4} [Ring R] (r : R) (k : ) :
k * r zmultiples r
@[deprecated AddSubgroup.intCast_mul_mem_zmultiples (since := "2024-04-17")]
theorem AddSubgroup.int_cast_mul_mem_zmultiples {R : Type u_4} [Ring R] (r : R) (k : ) :
k * r zmultiples r

Alias of AddSubgroup.intCast_mul_mem_zmultiples.

@[simp]
@[deprecated AddSubgroup.intCast_mem_zmultiples_one (since := "2024-04-17")]

Alias of AddSubgroup.intCast_mem_zmultiples_one.

theorem Subgroup.centralizer_closure {G : Type u_1} [Group G] (S : Set G) :
centralizer (closure S) = gS, centralizer (zpowers g)
theorem AddSubgroup.centralizer_closure {G : Type u_1} [AddGroup G] (S : Set G) :
centralizer (closure S) = gS, centralizer (zmultiples g)
theorem Subgroup.center_eq_iInf {G : Type u_1} [Group G] (S : Set G) (hS : closure S = ) :
center G = gS, centralizer (zpowers g)
theorem AddSubgroup.center_eq_iInf {G : Type u_1} [AddGroup G] (S : Set G) (hS : closure S = ) :
center G = gS, centralizer (zmultiples g)
theorem Subgroup.center_eq_infi' {G : Type u_1} [Group G] (S : Set G) (hS : closure S = ) :
center G = ⨅ (g : S), centralizer (zpowers g)
theorem AddSubgroup.center_eq_infi' {G : Type u_1} [AddGroup G] (S : Set G) (hS : closure S = ) :
center G = ⨅ (g : S), centralizer (zmultiples g)