@[simp]
theorem
Subgroup.range_zpowersHom
{G : Type u_1}
[Group G]
(g : G)
:
((zpowersHom G) g).range = Subgroup.zpowers g
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
@[simp]
theorem
AddSubgroup.range_zmultiplesHom
{A : Type u_2}
[AddGroup A]
(a : A)
:
((zmultiplesHom A) a).range = AddSubgroup.zmultiples a
@[simp]
theorem
AddSubgroup.intCast_mul_mem_zmultiples
{R : Type u_4}
[Ring R]
(r : R)
(k : ℤ)
:
↑k * r ∈ AddSubgroup.zmultiples r
@[deprecated AddSubgroup.intCast_mul_mem_zmultiples]
theorem
AddSubgroup.int_cast_mul_mem_zmultiples
{R : Type u_4}
[Ring R]
(r : R)
(k : ℤ)
:
↑k * r ∈ AddSubgroup.zmultiples r
Alias of AddSubgroup.intCast_mul_mem_zmultiples
.
@[simp]
theorem
AddSubgroup.intCast_mem_zmultiples_one
{R : Type u_4}
[Ring R]
(k : ℤ)
:
↑k ∈ AddSubgroup.zmultiples 1
@[deprecated AddSubgroup.intCast_mem_zmultiples_one]
theorem
AddSubgroup.int_cast_mem_zmultiples_one
{R : Type u_4}
[Ring R]
(k : ℤ)
:
↑k ∈ AddSubgroup.zmultiples 1
Alias of AddSubgroup.intCast_mem_zmultiples_one
.
@[simp]
theorem
Int.range_castAddHom
{A : Type u_4}
[AddGroupWithOne A]
:
(Int.castAddHom A).range = AddSubgroup.zmultiples 1
theorem
Subgroup.centralizer_closure
{G : Type u_1}
[Group G]
(S : Set G)
:
Subgroup.centralizer ↑(Subgroup.closure S) = ⨅ g ∈ S, Subgroup.centralizer ↑(Subgroup.zpowers g)
theorem
AddSubgroup.centralizer_closure
{G : Type u_1}
[AddGroup G]
(S : Set G)
:
AddSubgroup.centralizer ↑(AddSubgroup.closure S) = ⨅ g ∈ S, AddSubgroup.centralizer ↑(AddSubgroup.zmultiples g)
theorem
Subgroup.center_eq_iInf
{G : Type u_1}
[Group G]
(S : Set G)
(hS : Subgroup.closure S = ⊤)
:
Subgroup.center G = ⨅ g ∈ S, Subgroup.centralizer ↑(Subgroup.zpowers g)
theorem
AddSubgroup.center_eq_iInf
{G : Type u_1}
[AddGroup G]
(S : Set G)
(hS : AddSubgroup.closure S = ⊤)
:
AddSubgroup.center G = ⨅ g ∈ S, AddSubgroup.centralizer ↑(AddSubgroup.zmultiples g)
theorem
Subgroup.center_eq_infi'
{G : Type u_1}
[Group G]
(S : Set G)
(hS : Subgroup.closure S = ⊤)
:
Subgroup.center G = ⨅ (g : ↑S), Subgroup.centralizer ↑(Subgroup.zpowers ↑g)
theorem
AddSubgroup.center_eq_infi'
{G : Type u_1}
[AddGroup G]
(S : Set G)
(hS : AddSubgroup.closure S = ⊤)
:
AddSubgroup.center G = ⨅ (g : ↑S), AddSubgroup.centralizer ↑(AddSubgroup.zmultiples ↑g)