Documentation
Mathlib
.
Algebra
.
Group
.
Subgroup
.
ZPowers
.
Lemmas
Search
return to top
source
Imports
Init
Mathlib.Data.Countable.Basic
Mathlib.Algebra.Group.Subgroup.Ker
Mathlib.Data.Int.Cast.Lemmas
Mathlib.Algebra.Group.Subgroup.ZPowers.Basic
Imported by
Subgroup
.
range_zpowersHom
Subgroup
.
instCountableSubtypeMemZpowers
AddSubgroup
.
instCountableSubtypeMemZMultiples
AddSubgroup
.
range_zmultiplesHom
AddSubgroup
.
intCast_mul_mem_zmultiples
AddSubgroup
.
intCast_mem_zmultiples_one
Int
.
range_castAddHom
Subgroups generated by an element
#
Tags
#
subgroup, subgroups
source
theorem
Subgroup
.
range_zpowersHom
{
G
:
Type
u_1}
[
Group
G
]
(
g
:
G
)
:
(
(
zpowersHom
G
)
g
)
.
range
=
zpowers
g
source
instance
Subgroup
.
instCountableSubtypeMemZpowers
{
G
:
Type
u_1}
[
Group
G
]
(
a
:
G
)
:
Countable
↥
(
zpowers
a
)
source
instance
AddSubgroup
.
instCountableSubtypeMemZMultiples
{
G
:
Type
u_1}
[
AddGroup
G
]
(
a
:
G
)
:
Countable
↥
(
zmultiples
a
)
source
@[simp]
theorem
AddSubgroup
.
range_zmultiplesHom
{
A
:
Type
u_2}
[
AddGroup
A
]
(
a
:
A
)
:
(
(
zmultiplesHom
A
)
a
)
.
range
=
zmultiples
a
source
@[simp]
theorem
AddSubgroup
.
intCast_mul_mem_zmultiples
{
R
:
Type
u_4}
[
Ring
R
]
(
r
:
R
)
(
k
:
ℤ
)
:
↑
k
*
r
∈
zmultiples
r
source
@[simp]
theorem
AddSubgroup
.
intCast_mem_zmultiples_one
{
R
:
Type
u_4}
[
Ring
R
]
(
k
:
ℤ
)
:
↑
k
∈
zmultiples
1
source
@[simp]
theorem
Int
.
range_castAddHom
{
A
:
Type
u_4}
[
AddGroupWithOne
A
]
:
(
castAddHom
A
)
.
range
=
AddSubgroup.zmultiples
1