Documentation
Mathlib
.
Algebra
.
Group
.
Subgroup
.
ZPowers
.
Lemmas
Search
return to top
source
Imports
Init
Mathlib.Data.Countable.Basic
Mathlib.GroupTheory.Subgroup.Centralizer
Mathlib.Data.Int.Cast.Lemmas
Mathlib.Algebra.Group.Subgroup.ZPowers.Basic
Imported by
Subgroup
.
range_zpowersHom
Subgroup
.
instCountableSubtypeMemZpowers
AddSubgroup
.
instCountableSubtypeMemZmultiples
AddSubgroup
.
range_zmultiplesHom
AddSubgroup
.
intCast_mul_mem_zmultiples
AddSubgroup
.
intCast_mem_zmultiples_one
Int
.
range_castAddHom
Subgroup
.
centralizer_closure
AddSubgroup
.
centralizer_closure
Subgroup
.
center_eq_iInf
AddSubgroup
.
center_eq_iInf
Subgroup
.
center_eq_infi'
AddSubgroup
.
center_eq_infi'
Subgroups generated by an element
#
Tags
#
subgroup, subgroups
source
@[simp]
theorem
Subgroup
.
range_zpowersHom
{G :
Type
u_1}
[
Group
G
]
(g :
G
)
:
(
(
zpowersHom
G
)
g
)
.
range
=
zpowers
g
source
instance
Subgroup
.
instCountableSubtypeMemZpowers
{G :
Type
u_1}
[
Group
G
]
(a :
G
)
:
Countable
↥
(
zpowers
a
)
source
instance
AddSubgroup
.
instCountableSubtypeMemZmultiples
{G :
Type
u_1}
[
AddGroup
G
]
(a :
G
)
:
Countable
↥
(
zmultiples
a
)
source
@[simp]
theorem
AddSubgroup
.
range_zmultiplesHom
{A :
Type
u_2}
[
AddGroup
A
]
(a :
A
)
:
(
(
zmultiplesHom
A
)
a
)
.
range
=
zmultiples
a
source
@[simp]
theorem
AddSubgroup
.
intCast_mul_mem_zmultiples
{R :
Type
u_4}
[
Ring
R
]
(r :
R
)
(k :
ℤ
)
:
↑
k
*
r
∈
zmultiples
r
source
@[simp]
theorem
AddSubgroup
.
intCast_mem_zmultiples_one
{R :
Type
u_4}
[
Ring
R
]
(k :
ℤ
)
:
↑
k
∈
zmultiples
1
source
@[simp]
theorem
Int
.
range_castAddHom
{A :
Type
u_4}
[
AddGroupWithOne
A
]
:
(
castAddHom
A
)
.
range
=
AddSubgroup.zmultiples
1
source
theorem
Subgroup
.
centralizer_closure
{G :
Type
u_1}
[
Group
G
]
(S :
Set
G
)
:
centralizer
↑
(
closure
S
)
=
⨅
g
∈
S
,
centralizer
↑
(
zpowers
g
)
source
theorem
AddSubgroup
.
centralizer_closure
{G :
Type
u_1}
[
AddGroup
G
]
(S :
Set
G
)
:
centralizer
↑
(
closure
S
)
=
⨅
g
∈
S
,
centralizer
↑
(
zmultiples
g
)
source
theorem
Subgroup
.
center_eq_iInf
{G :
Type
u_1}
[
Group
G
]
(S :
Set
G
)
(hS :
closure
S
=
⊤
)
:
center
G
=
⨅
g
∈
S
,
centralizer
↑
(
zpowers
g
)
source
theorem
AddSubgroup
.
center_eq_iInf
{G :
Type
u_1}
[
AddGroup
G
]
(S :
Set
G
)
(hS :
closure
S
=
⊤
)
:
center
G
=
⨅
g
∈
S
,
centralizer
↑
(
zmultiples
g
)
source
theorem
Subgroup
.
center_eq_infi'
{G :
Type
u_1}
[
Group
G
]
(S :
Set
G
)
(hS :
closure
S
=
⊤
)
:
center
G
=
⨅ (
g
:
↑
S
),
centralizer
↑
(
zpowers
↑
g
)
source
theorem
AddSubgroup
.
center_eq_infi'
{G :
Type
u_1}
[
AddGroup
G
]
(S :
Set
G
)
(hS :
closure
S
=
⊤
)
:
center
G
=
⨅ (
g
:
↑
S
),
centralizer
↑
(
zmultiples
↑
g
)