Centralizers of subgroups #
The centralizer
of s
is the subgroup of g : G
commuting with every h : s
.
Equations
- Subgroup.centralizer s = { carrier := s.centralizer, mul_mem' := ⋯, one_mem' := ⋯, inv_mem' := ⋯ }
Instances For
The centralizer
of s
is the additive subgroup of g : G
commuting with every h : s
.
Equations
- AddSubgroup.centralizer s = { carrier := s.addCentralizer, add_mem' := ⋯, zero_mem' := ⋯, neg_mem' := ⋯ }
Instances For
theorem
Subgroup.le_centralizer_iff
{G : Type u_1}
[Group G]
{H K : Subgroup G}
:
H ≤ centralizer ↑K ↔ K ≤ centralizer ↑H
theorem
AddSubgroup.le_centralizer_iff
{G : Type u_1}
[AddGroup G]
{H K : AddSubgroup G}
:
H ≤ centralizer ↑K ↔ K ≤ centralizer ↑H
theorem
Subgroup.center_le_centralizer
{G : Type u_1}
[Group G]
(s : Set G)
:
center G ≤ centralizer s
theorem
AddSubgroup.center_le_centralizer
{G : Type u_1}
[AddGroup G]
(s : Set G)
:
center G ≤ centralizer s
theorem
Subgroup.centralizer_le
{G : Type u_1}
[Group G]
{s t : Set G}
(h : s ⊆ t)
:
centralizer t ≤ centralizer s
theorem
AddSubgroup.centralizer_le
{G : Type u_1}
[AddGroup G]
{s t : Set G}
(h : s ⊆ t)
:
centralizer t ≤ centralizer s
theorem
Subgroup.map_centralizer_le_centralizer_image
{G : Type u_1}
{G' : Type u_2}
[Group G]
[Group G']
(s : Set G)
(f : G →* G')
:
map f (centralizer s) ≤ centralizer (⇑f '' s)
theorem
AddSubgroup.map_centralizer_le_centralizer_image
{G : Type u_1}
{G' : Type u_2}
[AddGroup G]
[AddGroup G']
(s : Set G)
(f : G →+ G')
:
map f (centralizer s) ≤ centralizer (⇑f '' s)
instance
Subgroup.Centralizer.characteristic
{G : Type u_1}
[Group G]
{H : Subgroup G}
[hH : H.Characteristic]
:
(centralizer ↑H).Characteristic
instance
AddSubgroup.Centralizer.characteristic
{G : Type u_1}
[AddGroup G]
{H : AddSubgroup G}
[hH : H.Characteristic]
:
(centralizer ↑H).Characteristic
theorem
Subgroup.le_centralizer_iff_isCommutative
{G : Type u_1}
[Group G]
{K : Subgroup G}
:
K ≤ centralizer ↑K ↔ K.IsCommutative
theorem
AddSubgroup.le_centralizer_iff_isCommutative
{G : Type u_1}
[AddGroup G]
{K : AddSubgroup G}
:
K ≤ centralizer ↑K ↔ K.IsCommutative
theorem
Subgroup.le_centralizer
{G : Type u_1}
[Group G]
(H : Subgroup G)
[h : H.IsCommutative]
:
H ≤ centralizer ↑H
theorem
AddSubgroup.le_centralizer
{G : Type u_1}
[AddGroup G]
(H : AddSubgroup G)
[h : H.IsCommutative]
:
H ≤ centralizer ↑H
theorem
Subgroup.closure_le_centralizer_centralizer
{G : Type u_1}
[Group G]
(s : Set G)
:
closure s ≤ centralizer ↑(centralizer s)
theorem
AddSubgroup.closure_le_centralizer_centralizer
{G : Type u_1}
[AddGroup G]
(s : Set G)
:
closure s ≤ centralizer ↑(centralizer s)
@[reducible, inline]
abbrev
AddSubgroup.closureAddCommGroupOfComm
{G : Type u_1}
[AddGroup G]
{k : Set G}
(hcomm : ∀ x ∈ k, ∀ y ∈ k, x + y = y + x)
:
AddCommGroup ↥(closure k)
If all the elements of a set s
commute, then closure s
is an additive
commutative group.
Equations
Instances For
instance
Subgroup.instMulDistribMulActionSubtypeMemNormalizer
{G : Type u_1}
[Group G]
(H : Subgroup G)
:
MulDistribMulAction ↥H.normalizer ↥H
The conjugation action of N(H) on H.
Equations
- H.instMulDistribMulActionSubtypeMemNormalizer = MulDistribMulAction.mk ⋯ ⋯
The homomorphism N(H) → Aut(H) with kernel C(H).
Equations
- H.normalizerMonoidHom = MulDistribMulAction.toMulAut ↥H.normalizer ↥H
Instances For
@[simp]
theorem
Subgroup.normalizerMonoidHom_apply_symm_apply_coe
{G : Type u_1}
[Group G]
(H : Subgroup G)
(x : ↥H.normalizer)
(a✝ : ↥H)
:
↑((MulEquiv.symm (H.normalizerMonoidHom x)) a✝) = (↑x)⁻¹ * ↑a✝ * ↑x
theorem
Subgroup.normalizerMonoidHom_ker
{G : Type u_1}
[Group G]
(H : Subgroup G)
:
H.normalizerMonoidHom.ker = (centralizer ↑H).subgroupOf H.normalizer