Centralizers of subgroups #
The centralizer
of H
is the subgroup of g : G
commuting with every h : H
.
Equations
- Subgroup.centralizer s = { carrier := s.centralizer, mul_mem' := ⋯, one_mem' := ⋯, inv_mem' := ⋯ }
Instances For
The centralizer
of H
is the additive subgroup of g : G
commuting with every h : H
.
Equations
- AddSubgroup.centralizer s = { carrier := s.addCentralizer, add_mem' := ⋯, zero_mem' := ⋯, neg_mem' := ⋯ }
Instances For
theorem
Subgroup.centralizer_univ
{G : Type u_1}
[Group G]
:
Subgroup.centralizer Set.univ = Subgroup.center G
theorem
AddSubgroup.centralizer_univ
{G : Type u_1}
[AddGroup G]
:
AddSubgroup.centralizer Set.univ = AddSubgroup.center G
theorem
Subgroup.le_centralizer_iff
{G : Type u_1}
[Group G]
{H K : Subgroup G}
:
H ≤ Subgroup.centralizer ↑K ↔ K ≤ Subgroup.centralizer ↑H
theorem
AddSubgroup.le_centralizer_iff
{G : Type u_1}
[AddGroup G]
{H K : AddSubgroup G}
:
H ≤ AddSubgroup.centralizer ↑K ↔ K ≤ AddSubgroup.centralizer ↑H
@[simp]
theorem
Subgroup.centralizer_eq_top_iff_subset
{G : Type u_1}
[Group G]
{s : Set G}
:
Subgroup.centralizer s = ⊤ ↔ s ⊆ ↑(Subgroup.center G)
@[simp]
theorem
AddSubgroup.centralizer_eq_top_iff_subset
{G : Type u_1}
[AddGroup G]
{s : Set G}
:
AddSubgroup.centralizer s = ⊤ ↔ s ⊆ ↑(AddSubgroup.center G)
instance
Subgroup.Centralizer.characteristic
{G : Type u_1}
[Group G]
{H : Subgroup G}
[hH : H.Characteristic]
:
(Subgroup.centralizer ↑H).Characteristic
instance
AddSubgroup.Centralizer.characteristic
{G : Type u_1}
[AddGroup G]
{H : AddSubgroup G}
[hH : H.Characteristic]
:
(AddSubgroup.centralizer ↑H).Characteristic
theorem
Subgroup.le_centralizer_iff_isCommutative
{G : Type u_1}
[Group G]
{K : Subgroup G}
:
K ≤ Subgroup.centralizer ↑K ↔ K.IsCommutative
theorem
AddSubgroup.le_centralizer_iff_isCommutative
{G : Type u_1}
[AddGroup G]
{K : AddSubgroup G}
:
K ≤ AddSubgroup.centralizer ↑K ↔ K.IsCommutative
theorem
Subgroup.le_centralizer
{G : Type u_1}
[Group G]
(H : Subgroup G)
[h : H.IsCommutative]
:
H ≤ Subgroup.centralizer ↑H
theorem
AddSubgroup.le_centralizer
{G : Type u_1}
[AddGroup G]
(H : AddSubgroup G)
[h : H.IsCommutative]
:
H ≤ AddSubgroup.centralizer ↑H
instance
Subgroup.instMulDistribMulActionSubtypeMemNormalizer
{G : Type u_1}
[Group G]
(H : Subgroup G)
:
MulDistribMulAction ↥H.normalizer ↥H
The conjugation action of N(H) on H.
Equations
- H.instMulDistribMulActionSubtypeMemNormalizer = MulDistribMulAction.mk ⋯ ⋯
The homomorphism N(H) → Aut(H) with kernel C(H).
Equations
- H.normalizerMonoidHom = MulDistribMulAction.toMulAut ↥H.normalizer ↥H
Instances For
@[simp]
theorem
Subgroup.normalizerMonoidHom_apply_symm_apply_coe
{G : Type u_1}
[Group G]
(H : Subgroup G)
(x : ↥H.normalizer)
(a✝ : ↥H)
:
↑((MulEquiv.symm (H.normalizerMonoidHom x)) a✝) = (↑x)⁻¹ * ↑a✝ * ↑x
theorem
Subgroup.normalizerMonoidHom_ker
{G : Type u_1}
[Group G]
(H : Subgroup G)
:
H.normalizerMonoidHom.ker = (Subgroup.centralizer ↑H).subgroupOf H.normalizer