The alternating constant complex #
In this file we define the chain complex X ←0- X ←𝟙- X ←0- X ←𝟙- X ⋯
, and calculate its homology.
def
ChainComplex.alternatingConst
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
:
The chain complex X ←0- X ←𝟙- X ←0- X ←𝟙- X ⋯
.
It is exact away from 0
and has homology X
at 0
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
ChainComplex.alternatingConst_obj_d
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
(X : C)
(i j : ℕ)
:
@[simp]
theorem
ChainComplex.alternatingConst_obj_X
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
(X : C)
(x✝ : ℕ)
:
@[simp]
theorem
ChainComplex.alternatingConst_map_f
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
{X Y : C}
(f : X ⟶ Y)
(x✝ : ℕ)
:
noncomputable def
ChainComplex.alternatingConstHomologyDataEvenNEZero
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
[CategoryTheory.Limits.HasZeroObject C]
(X : C)
(n : ℕ)
(hn : Even n)
(h₀ : n ≠ 0)
:
The n
-th homology of the alternating constant complex is zero for non-zero even n
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
ChainComplex.alternatingConstHomologyDataOdd
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
[CategoryTheory.Limits.HasZeroObject C]
(X : C)
(n : ℕ)
(hn : Odd n)
:
The n
-th homology of the alternating constant complex is zero for odd n
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
ChainComplex.alternatingConstHomologyDataZero
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
(X : C)
(n : ℕ)
(hn : n = 0)
:
The n
-th homology of the alternating constant complex is X
for n = 0
.
Equations
Instances For
instance
ChainComplex.instHasHomologyNatObjAlternatingConst
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
[CategoryTheory.Limits.HasZeroObject C]
(X : C)
(n : ℕ)
:
theorem
ChainComplex.alternatingConst_exactAt
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
[CategoryTheory.Limits.HasZeroObject C]
(X : C)
(n : ℕ)
(hn : n ≠ 0)
:
The n
-th homology of the alternating constant complex is X
for n ≠ 0
.
noncomputable def
ChainComplex.alternatingConstHomologyZero
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
[CategoryTheory.Limits.HasZeroObject C]
(X : C)
:
The n
-th homology of the alternating constant complex is X
for n = 0
.