Short complexes in functor categories #
In this file, it is shown that if J
and C
are two categories (such
that C
has zero morphisms), then there is an equivalence of categories
ShortComplex.functorEquivalence J C : ShortComplex (J ⥤ C) ≌ J ⥤ ShortComplex C
.
def
CategoryTheory.ShortComplex.FunctorEquivalence.functor
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
:
Functor (ShortComplex (Functor J C)) (Functor J (ShortComplex C))
The obvious functor ShortComplex (J ⥤ C) ⥤ J ⥤ ShortComplex C
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.functor_obj_obj
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(S : ShortComplex (Functor J C))
(j : J)
:
((functor J C).obj S).obj j = S.map ((evaluation J C).obj j)
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.functor_map_app
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
{X✝ Y✝ : ShortComplex (Functor J C)}
(φ : X✝ ⟶ Y✝)
(j : J)
:
((functor J C).map φ).app j = ((evaluation J C).obj j).mapShortComplex.map φ
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.functor_obj_map
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(S : ShortComplex (Functor J C))
{X✝ Y✝ : J}
(f : X✝ ⟶ Y✝)
:
((functor J C).obj S).map f = S.mapNatTrans ((evaluation J C).map f)
def
CategoryTheory.ShortComplex.FunctorEquivalence.inverse
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
:
Functor (Functor J (ShortComplex C)) (ShortComplex (Functor J C))
The obvious functor (J ⥤ ShortComplex C) ⥤ ShortComplex (J ⥤ C)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.inverse_obj_X₂
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(F : Functor J (ShortComplex C))
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.inverse_obj_X₃
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(F : Functor J (ShortComplex C))
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.inverse_obj_f
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(F : Functor J (ShortComplex C))
:
((inverse J C).obj F).f = whiskerLeft F π₁Toπ₂
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.inverse_obj_g
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(F : Functor J (ShortComplex C))
:
((inverse J C).obj F).g = whiskerLeft F π₂Toπ₃
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.inverse_map_τ₂
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
{X✝ Y✝ : Functor J (ShortComplex C)}
(φ : X✝ ⟶ Y✝)
:
((inverse J C).map φ).τ₂ = whiskerRight φ π₂
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.inverse_obj_X₁
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(F : Functor J (ShortComplex C))
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.inverse_map_τ₃
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
{X✝ Y✝ : Functor J (ShortComplex C)}
(φ : X✝ ⟶ Y✝)
:
((inverse J C).map φ).τ₃ = whiskerRight φ π₃
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.inverse_map_τ₁
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
{X✝ Y✝ : Functor J (ShortComplex C)}
(φ : X✝ ⟶ Y✝)
:
((inverse J C).map φ).τ₁ = whiskerRight φ π₁
def
CategoryTheory.ShortComplex.FunctorEquivalence.unitIso
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
:
Functor.id (ShortComplex (Functor J C)) ≅ (functor J C).comp (inverse J C)
The unit isomorphism of the equivalence
ShortComplex.functorEquivalence : ShortComplex (J ⥤ C) ≌ J ⥤ ShortComplex C
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_inv_app_τ₃_app
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : ShortComplex (Functor J C))
(X✝ : J)
:
((unitIso J C).inv.app X).τ₃.app X✝ = CategoryStruct.id (X.X₃.obj X✝)
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_hom_app_τ₃_app
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : ShortComplex (Functor J C))
(X✝ : J)
:
((unitIso J C).hom.app X).τ₃.app X✝ = CategoryStruct.id (X.X₃.obj X✝)
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_inv_app_τ₁_app
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : ShortComplex (Functor J C))
(X✝ : J)
:
((unitIso J C).inv.app X).τ₁.app X✝ = CategoryStruct.id (X.X₁.obj X✝)
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_hom_app_τ₂_app
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : ShortComplex (Functor J C))
(X✝ : J)
:
((unitIso J C).hom.app X).τ₂.app X✝ = CategoryStruct.id (X.X₂.obj X✝)
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_inv_app_τ₂_app
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : ShortComplex (Functor J C))
(X✝ : J)
:
((unitIso J C).inv.app X).τ₂.app X✝ = CategoryStruct.id (X.X₂.obj X✝)
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_hom_app_τ₁_app
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : ShortComplex (Functor J C))
(X✝ : J)
:
((unitIso J C).hom.app X).τ₁.app X✝ = CategoryStruct.id (X.X₁.obj X✝)
def
CategoryTheory.ShortComplex.FunctorEquivalence.counitIso
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
:
(inverse J C).comp (functor J C) ≅ Functor.id (Functor J (ShortComplex C))
The counit isomorphism of the equivalence
ShortComplex.functorEquivalence : ShortComplex (J ⥤ C) ≌ J ⥤ ShortComplex C
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_hom_app_app_τ₃
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : Functor J (ShortComplex C))
(X✝ : J)
:
(((counitIso J C).hom.app X).app X✝).τ₃ = CategoryStruct.id (X.obj X✝).X₃
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_inv_app_app_τ₂
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : Functor J (ShortComplex C))
(X✝ : J)
:
(((counitIso J C).inv.app X).app X✝).τ₂ = CategoryStruct.id (X.obj X✝).X₂
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_hom_app_app_τ₂
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : Functor J (ShortComplex C))
(X✝ : J)
:
(((counitIso J C).hom.app X).app X✝).τ₂ = CategoryStruct.id (X.obj X✝).X₂
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_inv_app_app_τ₃
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : Functor J (ShortComplex C))
(X✝ : J)
:
(((counitIso J C).inv.app X).app X✝).τ₃ = CategoryStruct.id (X.obj X✝).X₃
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_inv_app_app_τ₁
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : Functor J (ShortComplex C))
(X✝ : J)
:
(((counitIso J C).inv.app X).app X✝).τ₁ = CategoryStruct.id (X.obj X✝).X₁
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_hom_app_app_τ₁
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : Functor J (ShortComplex C))
(X✝ : J)
:
(((counitIso J C).hom.app X).app X✝).τ₁ = CategoryStruct.id (X.obj X✝).X₁
def
CategoryTheory.ShortComplex.functorEquivalence
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
:
ShortComplex (Functor J C) ≌ Functor J (ShortComplex C)
The obvious equivalence ShortComplex (J ⥤ C) ≌ J ⥤ ShortComplex C
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.ShortComplex.functorEquivalence_counitIso
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
:
(functorEquivalence J C).counitIso = FunctorEquivalence.counitIso J C
@[simp]
theorem
CategoryTheory.ShortComplex.functorEquivalence_unitIso
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
:
(functorEquivalence J C).unitIso = FunctorEquivalence.unitIso J C
@[simp]
theorem
CategoryTheory.ShortComplex.functorEquivalence_functor
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
:
(functorEquivalence J C).functor = FunctorEquivalence.functor J C
@[simp]
theorem
CategoryTheory.ShortComplex.functorEquivalence_inverse
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
:
(functorEquivalence J C).inverse = FunctorEquivalence.inverse J C