Documentation

Mathlib.Algebra.Homology.ShortComplex.FunctorEquivalence

Short complexes in functor categories #

In this file, it is shown that if J and C are two categories (such that C has zero morphisms), then there is an equivalence of categories ShortComplex.functorEquivalence J C : ShortComplex (J ⥤ C) ≌ J ⥤ ShortComplex C.

The obvious functor ShortComplex (J ⥤ C) ⥤ J ⥤ ShortComplex C.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    @[simp]
    theorem CategoryTheory.ShortComplex.FunctorEquivalence.functor_map_app (J : Type u_1) (C : Type u_2) [Category.{u_3, u_1} J] [Category.{u_4, u_2} C] [Limits.HasZeroMorphisms C] {X✝ Y✝ : ShortComplex (Functor J C)} (φ : X✝ Y✝) (j : J) :
    ((functor J C).map φ).app j = ((evaluation J C).obj j).mapShortComplex.map φ
    @[simp]
    theorem CategoryTheory.ShortComplex.FunctorEquivalence.functor_obj_map (J : Type u_1) (C : Type u_2) [Category.{u_3, u_1} J] [Category.{u_4, u_2} C] [Limits.HasZeroMorphisms C] (S : ShortComplex (Functor J C)) {X✝ Y✝ : J} (f : X✝ Y✝) :
    ((functor J C).obj S).map f = S.mapNatTrans ((evaluation J C).map f)

    The obvious functor (J ⥤ ShortComplex C) ⥤ ShortComplex (J ⥤ C).

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The unit isomorphism of the equivalence ShortComplex.functorEquivalence : ShortComplex (J ⥤ C) ≌ J ⥤ ShortComplex C.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_inv_app_τ₃_app (J : Type u_1) (C : Type u_2) [Category.{u_3, u_1} J] [Category.{u_4, u_2} C] [Limits.HasZeroMorphisms C] (X : ShortComplex (Functor J C)) (X✝ : J) :
        ((unitIso J C).inv.app X).τ₃.app X✝ = CategoryStruct.id (X.X₃.obj X✝)
        @[simp]
        theorem CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_hom_app_τ₃_app (J : Type u_1) (C : Type u_2) [Category.{u_3, u_1} J] [Category.{u_4, u_2} C] [Limits.HasZeroMorphisms C] (X : ShortComplex (Functor J C)) (X✝ : J) :
        ((unitIso J C).hom.app X).τ₃.app X✝ = CategoryStruct.id (X.X₃.obj X✝)
        @[simp]
        theorem CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_inv_app_τ₁_app (J : Type u_1) (C : Type u_2) [Category.{u_3, u_1} J] [Category.{u_4, u_2} C] [Limits.HasZeroMorphisms C] (X : ShortComplex (Functor J C)) (X✝ : J) :
        ((unitIso J C).inv.app X).τ₁.app X✝ = CategoryStruct.id (X.X₁.obj X✝)
        @[simp]
        theorem CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_hom_app_τ₂_app (J : Type u_1) (C : Type u_2) [Category.{u_3, u_1} J] [Category.{u_4, u_2} C] [Limits.HasZeroMorphisms C] (X : ShortComplex (Functor J C)) (X✝ : J) :
        ((unitIso J C).hom.app X).τ₂.app X✝ = CategoryStruct.id (X.X₂.obj X✝)
        @[simp]
        theorem CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_inv_app_τ₂_app (J : Type u_1) (C : Type u_2) [Category.{u_3, u_1} J] [Category.{u_4, u_2} C] [Limits.HasZeroMorphisms C] (X : ShortComplex (Functor J C)) (X✝ : J) :
        ((unitIso J C).inv.app X).τ₂.app X✝ = CategoryStruct.id (X.X₂.obj X✝)
        @[simp]
        theorem CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_hom_app_τ₁_app (J : Type u_1) (C : Type u_2) [Category.{u_3, u_1} J] [Category.{u_4, u_2} C] [Limits.HasZeroMorphisms C] (X : ShortComplex (Functor J C)) (X✝ : J) :
        ((unitIso J C).hom.app X).τ₁.app X✝ = CategoryStruct.id (X.X₁.obj X✝)

        The counit isomorphism of the equivalence ShortComplex.functorEquivalence : ShortComplex (J ⥤ C) ≌ J ⥤ ShortComplex C.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_hom_app_app_τ₃ (J : Type u_1) (C : Type u_2) [Category.{u_3, u_1} J] [Category.{u_4, u_2} C] [Limits.HasZeroMorphisms C] (X : Functor J (ShortComplex C)) (X✝ : J) :
          (((counitIso J C).hom.app X).app X✝).τ₃ = CategoryStruct.id (X.obj X✝).X₃
          @[simp]
          theorem CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_inv_app_app_τ₂ (J : Type u_1) (C : Type u_2) [Category.{u_3, u_1} J] [Category.{u_4, u_2} C] [Limits.HasZeroMorphisms C] (X : Functor J (ShortComplex C)) (X✝ : J) :
          (((counitIso J C).inv.app X).app X✝).τ₂ = CategoryStruct.id (X.obj X✝).X₂
          @[simp]
          theorem CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_hom_app_app_τ₂ (J : Type u_1) (C : Type u_2) [Category.{u_3, u_1} J] [Category.{u_4, u_2} C] [Limits.HasZeroMorphisms C] (X : Functor J (ShortComplex C)) (X✝ : J) :
          (((counitIso J C).hom.app X).app X✝).τ₂ = CategoryStruct.id (X.obj X✝).X₂
          @[simp]
          theorem CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_inv_app_app_τ₃ (J : Type u_1) (C : Type u_2) [Category.{u_3, u_1} J] [Category.{u_4, u_2} C] [Limits.HasZeroMorphisms C] (X : Functor J (ShortComplex C)) (X✝ : J) :
          (((counitIso J C).inv.app X).app X✝).τ₃ = CategoryStruct.id (X.obj X✝).X₃
          @[simp]
          theorem CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_inv_app_app_τ₁ (J : Type u_1) (C : Type u_2) [Category.{u_3, u_1} J] [Category.{u_4, u_2} C] [Limits.HasZeroMorphisms C] (X : Functor J (ShortComplex C)) (X✝ : J) :
          (((counitIso J C).inv.app X).app X✝).τ₁ = CategoryStruct.id (X.obj X✝).X₁
          @[simp]
          theorem CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_hom_app_app_τ₁ (J : Type u_1) (C : Type u_2) [Category.{u_3, u_1} J] [Category.{u_4, u_2} C] [Limits.HasZeroMorphisms C] (X : Functor J (ShortComplex C)) (X✝ : J) :
          (((counitIso J C).hom.app X).app X✝).τ₁ = CategoryStruct.id (X.obj X✝).X₁

          The obvious equivalence ShortComplex (J ⥤ C) ≌ J ⥤ ShortComplex C.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For