Documentation

Mathlib.Algebra.Module.Presentation.Cokernel

Presentation of a cokernel #

If f : M₁ →ₗ[A] M₂ is a linear map between modules, pres₂ is a presentation of M₂ and g₁ : ι → M₁ is a family of generators of M₁ (which is expressed as hg₁ : Submodule.span A (Set.range g₁) = ⊤), then we provide a way to obtain a presentation of the cokernel of f. It requires an additional data data : pres₂.CokernelData f g₁, which consists of liftings of the images by f of the generators of M₁ as linear combinations of the generators of M₂. Then, we obtain a presentation pres₂.cokernel data hg₁ : Presentation A (M₂ ⧸ LinearMap.range f).

More generally, if we have an exact sequence M₁ → M₂ → M₃ → 0, we obtain a presentation of M₃, see Presentation.ofExact.

structure Module.Presentation.CokernelData {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] (pres₂ : Presentation A M₂) (f : M₁ →ₗ[A] M₂) {ι : Type w₁} (g₁ : ιM₁) :
Type (max (max u w₁) w₂₀)

Given a linear map f : M₁ →ₗ[A] M₂, a presentation of M₂ and a choice of generators of M₁, this structure specifies a lifting of the image by f of each generator of M₁ as a linear combination of the generators of M₂.

  • lift (i : ι) : pres₂.G →₀ A

    a lifting of f (g₁ i) in pres₂.G →₀ A

  • π_lift (i : ι) : pres₂ (self.lift i) = f (g₁ i)
Instances For
    def Module.Presentation.CokernelData.ofSection {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] (pres₂ : Presentation A M₂) (f : M₁ →ₗ[A] M₂) {ι : Type w₁} (g₁ : ιM₁) (s : M₂pres₂.G →₀ A) (hs : ∀ (m₂ : M₂), pres₂ (s m₂) = m₂) :
    pres₂.CokernelData f g₁

    Constructor for Presentation.CokernelData in case we have a chosen set-theoretic section of the projection (pres₂.G →₀ A) → M₂.

    Equations
    Instances For
      @[simp]
      theorem Module.Presentation.CokernelData.ofSection_lift {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] (pres₂ : Presentation A M₂) (f : M₁ →ₗ[A] M₂) {ι : Type w₁} (g₁ : ιM₁) (s : M₂pres₂.G →₀ A) (hs : ∀ (m₂ : M₂), pres₂ (s m₂) = m₂) (i : ι) :
      (ofSection pres₂ f g₁ s hs).lift i = s (f (g₁ i))
      instance Module.Presentation.nonempty_cokernelData {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] (pres₂ : Presentation A M₂) (f : M₁ →ₗ[A] M₂) {ι : Type w₁} (g₁ : ιM₁) :
      Nonempty (pres₂.CokernelData f g₁)
      def Module.Presentation.cokernelRelations {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] (pres₂ : Presentation A M₂) {f : M₁ →ₗ[A] M₂} {ι : Type w₁} {g₁ : ιM₁} (data : pres₂.CokernelData f g₁) :

      The shape of the presentation by generators and relations of the cokernel of f : M₁ →ₗ[A] M₂. It consists of a generator for each generator of M₂, and there are two types of relations: one for each relation in the presentation in M₂, and one for each generator of M₁.

      Equations
      • pres₂.cokernelRelations data = { G := pres₂.G, R := pres₂.R ι, relation := fun (x : pres₂.R ι) => match x with | Sum.inl r => pres₂.relation r | Sum.inr i => data.lift i }
      Instances For
        @[simp]
        theorem Module.Presentation.cokernelRelations_R {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] (pres₂ : Presentation A M₂) {f : M₁ →ₗ[A] M₂} {ι : Type w₁} {g₁ : ιM₁} (data : pres₂.CokernelData f g₁) :
        (pres₂.cokernelRelations data).R = (pres₂.R ι)
        @[simp]
        theorem Module.Presentation.cokernelRelations_relation {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] (pres₂ : Presentation A M₂) {f : M₁ →ₗ[A] M₂} {ι : Type w₁} {g₁ : ιM₁} (data : pres₂.CokernelData f g₁) (x✝ : pres₂.R ι) :
        (pres₂.cokernelRelations data).relation x✝ = match x✝ with | Sum.inl r => pres₂.relation r | Sum.inr i => data.lift i
        @[simp]
        theorem Module.Presentation.cokernelRelations_G {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] (pres₂ : Presentation A M₂) {f : M₁ →ₗ[A] M₂} {ι : Type w₁} {g₁ : ιM₁} (data : pres₂.CokernelData f g₁) :
        (pres₂.cokernelRelations data).G = pres₂.G
        def Module.Presentation.cokernelSolution {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] (pres₂ : Presentation A M₂) {f : M₁ →ₗ[A] M₂} {ι : Type w₁} {g₁ : ιM₁} (data : pres₂.CokernelData f g₁) :
        (pres₂.cokernelRelations data).Solution (M₂ LinearMap.range f)

        The obvious solution in M₂ ⧸ LinearMap.range f to the equations in pres₂.cokernelRelations data.

        Equations
        • pres₂.cokernelSolution data = { var := fun (g : (pres₂.cokernelRelations data).G) => (LinearMap.range f).mkQ (pres₂.var g), linearCombination_var_relation := }
        Instances For
          @[simp]
          theorem Module.Presentation.cokernelSolution_var {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] (pres₂ : Presentation A M₂) {f : M₁ →ₗ[A] M₂} {ι : Type w₁} {g₁ : ιM₁} (data : pres₂.CokernelData f g₁) (g : (pres₂.cokernelRelations data).G) :
          (pres₂.cokernelSolution data).var g = (LinearMap.range f).mkQ (pres₂.var g)
          noncomputable def Module.Presentation.cokernelSolution.isPresentationCore {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] (pres₂ : Presentation A M₂) {f : M₁ →ₗ[A] M₂} {ι : Type w₁} {g₁ : ιM₁} (data : pres₂.CokernelData f g₁) (hg₁ : Submodule.span A (Set.range g₁) = ) :
          (pres₂.cokernelSolution data).IsPresentationCore

          The cokernel can be defined by generators and relations.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem Module.Presentation.cokernelSolution.isPresentation {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] (pres₂ : Presentation A M₂) {f : M₁ →ₗ[A] M₂} {ι : Type w₁} {g₁ : ιM₁} (data : pres₂.CokernelData f g₁) (hg₁ : Submodule.span A (Set.range g₁) = ) :
            (pres₂.cokernelSolution data).IsPresentation
            def Module.Presentation.cokernel {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] (pres₂ : Presentation A M₂) {f : M₁ →ₗ[A] M₂} {ι : Type w₁} {g₁ : ιM₁} (data : pres₂.CokernelData f g₁) (hg₁ : Submodule.span A (Set.range g₁) = ) :

            The presentation of the cokernel of a linear map f : M₁ →ₗ[A] M₂ that is obtained from a presentation pres₂ of M₂, a choice of generators g₁ : ι → M₁ of M₁, and an additional data in pres₂.CokernelData f g₁.

            Equations
            Instances For
              @[simp]
              theorem Module.Presentation.cokernel_G {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] (pres₂ : Presentation A M₂) {f : M₁ →ₗ[A] M₂} {ι : Type w₁} {g₁ : ιM₁} (data : pres₂.CokernelData f g₁) (hg₁ : Submodule.span A (Set.range g₁) = ) :
              (pres₂.cokernel data hg₁).G = pres₂.G
              @[simp]
              theorem Module.Presentation.cokernel_var {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] (pres₂ : Presentation A M₂) {f : M₁ →ₗ[A] M₂} {ι : Type w₁} {g₁ : ιM₁} (data : pres₂.CokernelData f g₁) (hg₁ : Submodule.span A (Set.range g₁) = ) (g : (pres₂.cokernelRelations data).G) :
              (pres₂.cokernel data hg₁).var g = Submodule.Quotient.mk (pres₂.var g)
              @[simp]
              theorem Module.Presentation.cokernel_R {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] (pres₂ : Presentation A M₂) {f : M₁ →ₗ[A] M₂} {ι : Type w₁} {g₁ : ιM₁} (data : pres₂.CokernelData f g₁) (hg₁ : Submodule.span A (Set.range g₁) = ) :
              (pres₂.cokernel data hg₁).R = (pres₂.R ι)
              @[simp]
              theorem Module.Presentation.cokernel_relation {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] (pres₂ : Presentation A M₂) {f : M₁ →ₗ[A] M₂} {ι : Type w₁} {g₁ : ιM₁} (data : pres₂.CokernelData f g₁) (hg₁ : Submodule.span A (Set.range g₁) = ) (r : (pres₂.cokernelRelations data).R) :
              (pres₂.cokernel data hg₁).relation r = match r with | Sum.inl r => pres₂.relation r | Sum.inr i => data.lift i
              noncomputable def Module.Presentation.ofExact {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} {M₃ : Type v₃} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] [AddCommGroup M₃] [Module A M₃] {f : M₁ →ₗ[A] M₂} {g : M₂ →ₗ[A] M₃} (pres₂ : Presentation A M₂) {ι : Type w₁} {g₁ : ιM₁} (data : pres₂.CokernelData f g₁) (hfg : Function.Exact f g) (hg : Function.Surjective g) (hg₁ : Submodule.span A (Set.range g₁) = ) :

              Given an exact sequence of A-modules M₁ → M₂ → M₃ → 0, this is the presentation of M₃ that is obtained from a presentation pres₂ of M₂, a choice of generators g₁ : ι → M₁ of M₁, and an additional data in a Presentation.CokernelData structure.

              Equations
              • pres₂.ofExact data hfg hg hg₁ = (pres₂.cokernel data hg₁).ofLinearEquiv (hfg.linearEquivOfSurjective hg)
              Instances For
                @[simp]
                theorem Module.Presentation.ofExact_R {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} {M₃ : Type v₃} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] [AddCommGroup M₃] [Module A M₃] {f : M₁ →ₗ[A] M₂} {g : M₂ →ₗ[A] M₃} (pres₂ : Presentation A M₂) {ι : Type w₁} {g₁ : ιM₁} (data : pres₂.CokernelData f g₁) (hfg : Function.Exact f g) (hg : Function.Surjective g) (hg₁ : Submodule.span A (Set.range g₁) = ) :
                (pres₂.ofExact data hfg hg hg₁).R = (pres₂.R ι)
                @[simp]
                theorem Module.Presentation.ofExact_G {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} {M₃ : Type v₃} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] [AddCommGroup M₃] [Module A M₃] {f : M₁ →ₗ[A] M₂} {g : M₂ →ₗ[A] M₃} (pres₂ : Presentation A M₂) {ι : Type w₁} {g₁ : ιM₁} (data : pres₂.CokernelData f g₁) (hfg : Function.Exact f g) (hg : Function.Surjective g) (hg₁ : Submodule.span A (Set.range g₁) = ) :
                (pres₂.ofExact data hfg hg hg₁).G = pres₂.G
                @[simp]
                theorem Module.Presentation.ofExact_var {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} {M₃ : Type v₃} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] [AddCommGroup M₃] [Module A M₃] {f : M₁ →ₗ[A] M₂} {g : M₂ →ₗ[A] M₃} (pres₂ : Presentation A M₂) {ι : Type w₁} {g₁ : ιM₁} (data : pres₂.CokernelData f g₁) (hfg : Function.Exact f g) (hg : Function.Surjective g) (hg₁ : Submodule.span A (Set.range g₁) = ) (g✝ : (pres₂.cokernel data hg₁).G) :
                (pres₂.ofExact data hfg hg hg₁).var g✝ = g (pres₂.var g✝)
                @[simp]
                theorem Module.Presentation.ofExact_relation {A : Type u} [Ring A] {M₁ : Type v₁} {M₂ : Type v₂} {M₃ : Type v₃} [AddCommGroup M₁] [Module A M₁] [AddCommGroup M₂] [Module A M₂] [AddCommGroup M₃] [Module A M₃] {f : M₁ →ₗ[A] M₂} {g : M₂ →ₗ[A] M₃} (pres₂ : Presentation A M₂) {ι : Type w₁} {g₁ : ιM₁} (data : pres₂.CokernelData f g₁) (hfg : Function.Exact f g) (hg : Function.Surjective g) (hg₁ : Submodule.span A (Set.range g₁) = ) (r : (pres₂.cokernel data hg₁).R) :
                (pres₂.ofExact data hfg hg hg₁).relation r = match r with | Sum.inl r => pres₂.relation r | Sum.inr i => data.lift i