Documentation

Mathlib.Algebra.Order.Group.PosPart

Positive & negative parts #

Mathematical structures possessing an absolute value often also possess a unique decomposition of elements into "positive" and "negative" parts which are in some sense "disjoint" (e.g. the Jordan decomposition of a measure).

This file provides instances of PosPart and NegPart, the positive and negative parts of an element in a lattice ordered group.

Main statements #

References #

Tags #

positive part, negative part

def instOneLePart {α : Type u_1} [Lattice α] [Group α] :

The positive part of an element a in a lattice ordered group is a ⊔ 1, denoted a⁺ᵐ.

Equations
Instances For
    def instPosPart {α : Type u_1} [Lattice α] [AddGroup α] :

    The positive part of an element a in a lattice ordered group is a ⊔ 0, denoted a⁺.

    Equations
    Instances For
      def instLeOnePart {α : Type u_1} [Lattice α] [Group α] :

      The negative part of an element a in a lattice ordered group is a⁻¹ ⊔ 1, denoted a⁻ᵐ .

      Equations
      Instances For
        def instNegPart {α : Type u_1} [Lattice α] [AddGroup α] :

        The negative part of an element a in a lattice ordered group is (-a) ⊔ 0, denoted a⁻.

        Equations
        Instances For
          theorem leOnePart_def {α : Type u_1} [Lattice α] [Group α] (a : α) :
          theorem negPart_def {α : Type u_1} [Lattice α] [AddGroup α] (a : α) :
          theorem oneLePart_def {α : Type u_1} [Lattice α] [Group α] (a : α) :
          theorem posPart_def {α : Type u_1} [Lattice α] [AddGroup α] (a : α) :
          theorem oneLePart_mono {α : Type u_1} [Lattice α] [Group α] :
          Monotone fun (x : α) => OneLePart.oneLePart x
          theorem posPart_mono {α : Type u_1} [Lattice α] [AddGroup α] :
          Monotone fun (x : α) => PosPart.posPart x
          theorem oneLePart_one {α : Type u_1} [Lattice α] [Group α] :
          theorem posPart_zero {α : Type u_1} [Lattice α] [AddGroup α] :
          theorem leOnePart_one {α : Type u_1} [Lattice α] [Group α] :
          theorem negPart_zero {α : Type u_1} [Lattice α] [AddGroup α] :
          theorem one_le_oneLePart {α : Type u_1} [Lattice α] [Group α] (a : α) :
          theorem posPart_nonneg {α : Type u_1} [Lattice α] [AddGroup α] (a : α) :
          theorem one_le_leOnePart {α : Type u_1} [Lattice α] [Group α] (a : α) :
          theorem negPart_nonneg {α : Type u_1} [Lattice α] [AddGroup α] (a : α) :
          theorem le_oneLePart {α : Type u_1} [Lattice α] [Group α] (a : α) :
          theorem le_posPart {α : Type u_1} [Lattice α] [AddGroup α] (a : α) :
          theorem inv_le_leOnePart {α : Type u_1} [Lattice α] [Group α] (a : α) :
          theorem neg_le_negPart {α : Type u_1} [Lattice α] [AddGroup α] (a : α) :
          theorem oneLePart_eq_self {α : Type u_1} [Lattice α] [Group α] {a : α} :
          theorem posPart_eq_self {α : Type u_1} [Lattice α] [AddGroup α] {a : α} :
          Iff (Eq (PosPart.posPart a) a) (LE.le 0 a)
          theorem oneLePart_eq_one {α : Type u_1} [Lattice α] [Group α] {a : α} :
          theorem posPart_eq_zero {α : Type u_1} [Lattice α] [AddGroup α] {a : α} :
          Iff (Eq (PosPart.posPart a) 0) (LE.le a 0)
          theorem oneLePart_of_one_le {α : Type u_1} [Lattice α] [Group α] {a : α} :

          Alias of the reverse direction of oneLePart_eq_self.

          theorem posPart_of_nonneg {α : Type u_1} [Lattice α] [AddGroup α] {a : α} :
          LE.le 0 aEq (PosPart.posPart a) a
          theorem oneLePart_of_le_one {α : Type u_1} [Lattice α] [Group α] {a : α} :

          Alias of the reverse direction of oneLePart_eq_one.

          theorem posPart_of_nonpos {α : Type u_1} [Lattice α] [AddGroup α] {a : α} :
          LE.le a 0Eq (PosPart.posPart a) 0
          theorem leOnePart_eq_inv' {α : Type u_1} [Lattice α] [Group α] {a : α} :

          See also leOnePart_eq_inv.

          theorem negPart_eq_neg' {α : Type u_1} [Lattice α] [AddGroup α] {a : α} :

          See also negPart_eq_neg.

          theorem leOnePart_eq_one' {α : Type u_1} [Lattice α] [Group α] {a : α} :

          See also leOnePart_eq_one.

          theorem negPart_eq_zero' {α : Type u_1} [Lattice α] [AddGroup α] {a : α} :

          See also negPart_eq_zero.

          theorem oneLePart_le_one {α : Type u_1} [Lattice α] [Group α] {a : α} :
          theorem posPart_nonpos {α : Type u_1} [Lattice α] [AddGroup α] {a : α} :
          theorem leOnePart_le_one' {α : Type u_1} [Lattice α] [Group α] {a : α} :

          See also leOnePart_le_one.

          theorem negPart_nonpos' {α : Type u_1} [Lattice α] [AddGroup α] {a : α} :

          See also negPart_nonpos.

          theorem leOnePart_le_one {α : Type u_1} [Lattice α] [Group α] {a : α} :
          theorem negPart_nonpos {α : Type u_1} [Lattice α] [AddGroup α] {a : α} :
          theorem one_lt_oneLePart {α : Type u_1} [Lattice α] [Group α] {a : α} (ha : LT.lt 1 a) :
          theorem posPart_pos {α : Type u_1} [Lattice α] [AddGroup α] {a : α} (ha : LT.lt 0 a) :
          theorem oneLePart_inv {α : Type u_1} [Lattice α] [Group α] (a : α) :
          theorem posPart_neg {α : Type u_1} [Lattice α] [AddGroup α] (a : α) :
          theorem leOnePart_inv {α : Type u_1} [Lattice α] [Group α] (a : α) :
          theorem negPart_neg {α : Type u_1} [Lattice α] [AddGroup α] (a : α) :
          theorem leOnePart_eq_inv {α : Type u_1} [Lattice α] [Group α] {a : α} [MulLeftMono α] :
          theorem negPart_eq_neg {α : Type u_1} [Lattice α] [AddGroup α] {a : α} [AddLeftMono α] :
          theorem leOnePart_eq_one {α : Type u_1} [Lattice α] [Group α] {a : α} [MulLeftMono α] :
          theorem negPart_eq_zero {α : Type u_1} [Lattice α] [AddGroup α] {a : α} [AddLeftMono α] :
          Iff (Eq (NegPart.negPart a) 0) (LE.le 0 a)
          theorem leOnePart_of_le_one {α : Type u_1} [Lattice α] [Group α] {a : α} [MulLeftMono α] :

          Alias of the reverse direction of leOnePart_eq_inv.

          theorem negPart_of_nonpos {α : Type u_1} [Lattice α] [AddGroup α] {a : α} [AddLeftMono α] :
          theorem leOnePart_of_one_le {α : Type u_1} [Lattice α] [Group α] {a : α} [MulLeftMono α] :

          Alias of the reverse direction of leOnePart_eq_one.

          theorem negPart_of_nonneg {α : Type u_1} [Lattice α] [AddGroup α] {a : α} [AddLeftMono α] :
          LE.le 0 aEq (NegPart.negPart a) 0
          theorem one_lt_ltOnePart {α : Type u_1} [Lattice α] [Group α] {a : α} [MulLeftMono α] (ha : LT.lt a 1) :
          theorem negPart_pos {α : Type u_1} [Lattice α] [AddGroup α] {a : α} [AddLeftMono α] (ha : LT.lt a 0) :
          theorem posPart_sub_negPart {α : Type u_1} [Lattice α] [AddGroup α] [AddLeftMono α] (a : α) :
          theorem oneLePart_leOnePart_injective {α : Type u_1} [Lattice α] [Group α] [MulLeftMono α] :
          Function.Injective fun (a : α) => { fst := OneLePart.oneLePart a, snd := LeOnePart.leOnePart a }
          theorem posPart_negPart_injective {α : Type u_1} [Lattice α] [AddGroup α] [AddLeftMono α] :
          Function.Injective fun (a : α) => { fst := PosPart.posPart a, snd := NegPart.negPart a }
          theorem posPart_negPart_inj {α : Type u_1} [Lattice α] [AddGroup α] {a b : α} [AddLeftMono α] :
          theorem leOnePart_eq_inv_inf_one {α : Type u_1} [Lattice α] [Group α] [MulLeftMono α] [MulRightMono α] (a : α) :
          theorem negPart_eq_neg_inf_zero {α : Type u_1} [Lattice α] [AddGroup α] [AddLeftMono α] [AddRightMono α] (a : α) :
          theorem sup_eq_mul_oneLePart_div {α : Type u_1} [Lattice α] [CommGroup α] [MulLeftMono α] (a b : α) :
          theorem sup_eq_add_posPart_sub {α : Type u_1} [Lattice α] [AddCommGroup α] [AddLeftMono α] (a b : α) :
          theorem inf_eq_div_oneLePart_div {α : Type u_1} [Lattice α] [CommGroup α] [MulLeftMono α] (a b : α) :
          theorem inf_eq_sub_posPart_sub {α : Type u_1} [Lattice α] [AddCommGroup α] [AddLeftMono α] (a b : α) :
          theorem oneLePart_eq_ite {α : Type u_1} [LinearOrder α] [Group α] {a : α} :
          theorem posPart_eq_ite {α : Type u_1} [LinearOrder α] [AddGroup α] {a : α} :
          Eq (PosPart.posPart a) (ite (LE.le 0 a) a 0)
          theorem one_lt_oneLePart_iff {α : Type u_1} [LinearOrder α] [Group α] {a : α} :
          theorem posPart_pos_iff {α : Type u_1} [LinearOrder α] [AddGroup α] {a : α} :
          theorem posPart_eq_of_posPart_pos {α : Type u_1} [LinearOrder α] [AddGroup α] {a : α} (ha : LT.lt 0 (PosPart.posPart a)) :
          theorem oneLePart_lt {α : Type u_1} [LinearOrder α] [Group α] {a b : α} :
          Iff (LT.lt (OneLePart.oneLePart a) b) (And (LT.lt a b) (LT.lt 1 b))
          theorem posPart_lt {α : Type u_1} [LinearOrder α] [AddGroup α] {a b : α} :
          Iff (LT.lt (PosPart.posPart a) b) (And (LT.lt a b) (LT.lt 0 b))
          theorem leOnePart_eq_ite {α : Type u_1} [LinearOrder α] [Group α] {a : α} [MulLeftMono α] :
          theorem negPart_eq_ite {α : Type u_1} [LinearOrder α] [AddGroup α] {a : α} [AddLeftMono α] :
          Eq (NegPart.negPart a) (ite (LE.le a 0) (Neg.neg a) 0)
          theorem one_lt_ltOnePart_iff {α : Type u_1} [LinearOrder α] [Group α] {a : α} [MulLeftMono α] :
          theorem negPart_pos_iff {α : Type u_1} [LinearOrder α] [AddGroup α] {a : α} [AddLeftMono α] :
          theorem leOnePart_lt {α : Type u_1} [LinearOrder α] [Group α] {a b : α} [MulLeftMono α] [MulRightMono α] :
          theorem negPart_lt {α : Type u_1} [LinearOrder α] [AddGroup α] {a b : α} [AddLeftMono α] [AddRightMono α] :
          Iff (LT.lt (NegPart.negPart a) b) (And (LT.lt (Neg.neg b) a) (LT.lt 0 b))
          theorem Pi.oneLePart_apply {ι : Type u_2} {α : ιType u_3} [(i : ι) → Lattice (α i)] [(i : ι) → Group (α i)] (f : (i : ι) → α i) (i : ι) :
          theorem Pi.posPart_apply {ι : Type u_2} {α : ιType u_3} [(i : ι) → Lattice (α i)] [(i : ι) → AddGroup (α i)] (f : (i : ι) → α i) (i : ι) :
          theorem Pi.leOnePart_apply {ι : Type u_2} {α : ιType u_3} [(i : ι) → Lattice (α i)] [(i : ι) → Group (α i)] (f : (i : ι) → α i) (i : ι) :
          theorem Pi.negPart_apply {ι : Type u_2} {α : ιType u_3} [(i : ι) → Lattice (α i)] [(i : ι) → AddGroup (α i)] (f : (i : ι) → α i) (i : ι) :
          theorem Pi.oneLePart_def {ι : Type u_2} {α : ιType u_3} [(i : ι) → Lattice (α i)] [(i : ι) → Group (α i)] (f : (i : ι) → α i) :
          Eq (OneLePart.oneLePart f) fun (i : ι) => OneLePart.oneLePart (f i)
          theorem Pi.posPart_def {ι : Type u_2} {α : ιType u_3} [(i : ι) → Lattice (α i)] [(i : ι) → AddGroup (α i)] (f : (i : ι) → α i) :
          Eq (PosPart.posPart f) fun (i : ι) => PosPart.posPart (f i)
          theorem Pi.leOnePart_def {ι : Type u_2} {α : ιType u_3} [(i : ι) → Lattice (α i)] [(i : ι) → Group (α i)] (f : (i : ι) → α i) :
          Eq (LeOnePart.leOnePart f) fun (i : ι) => LeOnePart.leOnePart (f i)
          theorem Pi.negPart_def {ι : Type u_2} {α : ιType u_3} [(i : ι) → Lattice (α i)] [(i : ι) → AddGroup (α i)] (f : (i : ι) → α i) :
          Eq (NegPart.negPart f) fun (i : ι) => NegPart.negPart (f i)