Archimedean classes for ordered module #
Main definitions #
ArchimedeanClass.ball
areArchimedeanClass.ballAddSubgroup
as a submodules.ArchimedeanClass.closedBall
areArchimedeanClass.closedBallAddSubgroup
as a submodules.
@[simp]
theorem
ArchimedeanClass.mk_smul
{M : Type u_1}
[AddCommGroup M]
[LinearOrder M]
[IsOrderedAddMonoid M]
{K : Type u_2}
[Ring K]
[LinearOrder K]
[IsOrderedRing K]
[Archimedean K]
[Module K M]
[PosSMulMono K M]
(a : M)
{k : K}
(h : k ≠ 0)
:
theorem
ArchimedeanClass.mk_le_mk_smul
{M : Type u_1}
[AddCommGroup M]
[LinearOrder M]
[IsOrderedAddMonoid M]
{K : Type u_2}
[Ring K]
[LinearOrder K]
[IsOrderedRing K]
[Archimedean K]
[Module K M]
[PosSMulMono K M]
(a : M)
(k : K)
:
noncomputable def
ArchimedeanClass.submodule
{M : Type u_1}
[AddCommGroup M]
[LinearOrder M]
[IsOrderedAddMonoid M]
(K : Type u_2)
[Ring K]
[LinearOrder K]
[IsOrderedRing K]
[Archimedean K]
[Module K M]
[PosSMulMono K M]
(s : UpperSet (ArchimedeanClass M))
:
Submodule K M
Given an upper set s
of archimedean classes in a linearly ordered module M
with Archimedean
scalars, all elements belonging to these classes form a submodule, except when s = ⊤
for which the
set would be empty. For s = ⊤
, we assign the junk value ⊥
.
This has the same carrier as ArchimedeanClass.addSubgroup
's.
Equations
- ArchimedeanClass.submodule K s = { toAddSubmonoid := (ArchimedeanClass.addSubgroup s).toAddSubmonoid, smul_mem' := ⋯ }
Instances For
@[reducible, inline]
noncomputable abbrev
ArchimedeanClass.ball
{M : Type u_1}
[AddCommGroup M]
[LinearOrder M]
[IsOrderedAddMonoid M]
(K : Type u_2)
[Ring K]
[LinearOrder K]
[IsOrderedRing K]
[Archimedean K]
[Module K M]
[PosSMulMono K M]
(c : ArchimedeanClass M)
:
Submodule K M
An open ball defined by ArchimedeanClass.submodule
of UpperSet.Ioi c
.
For c = ⊤
, we assign the junk value ⊥
.
This has the same carrier as ArchimedeanClass.ballAddSubgroup
's.
Equations
Instances For
@[reducible, inline]
noncomputable abbrev
ArchimedeanClass.closedBall
{M : Type u_1}
[AddCommGroup M]
[LinearOrder M]
[IsOrderedAddMonoid M]
(K : Type u_2)
[Ring K]
[LinearOrder K]
[IsOrderedRing K]
[Archimedean K]
[Module K M]
[PosSMulMono K M]
(c : ArchimedeanClass M)
:
Submodule K M
A closed ball defined by ArchimedeanClass.submodule
of UpperSet.Ici c
.
This has the same carrier as ArchimedeanClass.closedBallAddSubgroup
's.
Equations
Instances For
@[simp]
theorem
ArchimedeanClass.toAddSubgroup_ball
{M : Type u_1}
[AddCommGroup M]
[LinearOrder M]
[IsOrderedAddMonoid M]
(K : Type u_2)
[Ring K]
[LinearOrder K]
[IsOrderedRing K]
[Archimedean K]
[Module K M]
[PosSMulMono K M]
(c : ArchimedeanClass M)
:
@[simp]
theorem
ArchimedeanClass.toAddSubgroup_closedBall
{M : Type u_1}
[AddCommGroup M]
[LinearOrder M]
[IsOrderedAddMonoid M]
(K : Type u_2)
[Ring K]
[LinearOrder K]
[IsOrderedRing K]
[Archimedean K]
[Module K M]
[PosSMulMono K M]
(c : ArchimedeanClass M)
:
@[simp]
theorem
ArchimedeanClass.mem_ball_iff
{M : Type u_1}
[AddCommGroup M]
[LinearOrder M]
[IsOrderedAddMonoid M]
(K : Type u_2)
[Ring K]
[LinearOrder K]
[IsOrderedRing K]
[Archimedean K]
[Module K M]
[PosSMulMono K M]
{a : M}
{c : ArchimedeanClass M}
(hc : c ≠ ⊤)
:
@[simp]
theorem
ArchimedeanClass.mem_closedBall_iff
{M : Type u_1}
[AddCommGroup M]
[LinearOrder M]
[IsOrderedAddMonoid M]
(K : Type u_2)
[Ring K]
[LinearOrder K]
[IsOrderedRing K]
[Archimedean K]
[Module K M]
[PosSMulMono K M]
{a : M}
{c : ArchimedeanClass M}
:
@[simp]
theorem
ArchimedeanClass.ball_top
(M : Type u_1)
[AddCommGroup M]
[LinearOrder M]
[IsOrderedAddMonoid M]
(K : Type u_2)
[Ring K]
[LinearOrder K]
[IsOrderedRing K]
[Archimedean K]
[Module K M]
[PosSMulMono K M]
:
@[simp]
theorem
ArchimedeanClass.closedBall_top
(M : Type u_1)
[AddCommGroup M]
[LinearOrder M]
[IsOrderedAddMonoid M]
(K : Type u_2)
[Ring K]
[LinearOrder K]
[IsOrderedRing K]
[Archimedean K]
[Module K M]
[PosSMulMono K M]
:
theorem
ArchimedeanClass.ball_antitone
{M : Type u_1}
[AddCommGroup M]
[LinearOrder M]
[IsOrderedAddMonoid M]
(K : Type u_2)
[Ring K]
[LinearOrder K]
[IsOrderedRing K]
[Archimedean K]
[Module K M]
[PosSMulMono K M]
: