Documentation

Mathlib.Algebra.Order.Monoid.Basic

Ordered monoids #

This file develops some additional material on ordered monoids.

@[reducible, inline]
abbrev Function.Injective.orderedCommMonoid {α : Type u} [OrderedCommMonoid α] {β : Type u_2} [One β] [Mul β] [Pow β ] (f : βα) (hf : Injective f) (one : f 1 = 1) (mul : ∀ (x y : β), f (x * y) = f x * f y) (npow : ∀ (x : β) (n : ), f (x ^ n) = f x ^ n) :

Pullback an OrderedCommMonoid under an injective map. See note [reducible non-instances].

Equations
Instances For
    @[reducible, inline]
    abbrev Function.Injective.orderedAddCommMonoid {α : Type u} [OrderedAddCommMonoid α] {β : Type u_2} [Zero β] [Add β] [SMul β] (f : βα) (hf : Injective f) (one : f 0 = 0) (mul : ∀ (x y : β), f (x + y) = f x + f y) (npow : ∀ (x : β) (n : ), f (n x) = n f x) :

    Pullback an OrderedAddCommMonoid under an injective map.

    Equations
    Instances For
      @[reducible, inline]
      abbrev Function.Injective.orderedCancelCommMonoid {α : Type u} {β : Type u_1} [OrderedCancelCommMonoid α] [One β] [Mul β] [Pow β ] (f : βα) (hf : Injective f) (one : f 1 = 1) (mul : ∀ (x y : β), f (x * y) = f x * f y) (npow : ∀ (x : β) (n : ), f (x ^ n) = f x ^ n) :

      Pullback an OrderedCancelCommMonoid under an injective map. See note [reducible non-instances].

      Equations
      Instances For
        @[reducible, inline]
        abbrev Function.Injective.orderedCancelAddCommMonoid {α : Type u} {β : Type u_1} [OrderedCancelAddCommMonoid α] [Zero β] [Add β] [SMul β] (f : βα) (hf : Injective f) (one : f 0 = 0) (mul : ∀ (x y : β), f (x + y) = f x + f y) (npow : ∀ (x : β) (n : ), f (n x) = n f x) :

        Pullback an OrderedCancelAddCommMonoid under an injective map.

        Equations
        Instances For
          @[reducible, inline]
          abbrev Function.Injective.linearOrderedCommMonoid {α : Type u} [LinearOrderedCommMonoid α] {β : Type u_2} [One β] [Mul β] [Pow β ] [Max β] [Min β] (f : βα) (hf : Injective f) (one : f 1 = 1) (mul : ∀ (x y : β), f (x * y) = f x * f y) (npow : ∀ (x : β) (n : ), f (x ^ n) = f x ^ n) (sup : ∀ (x y : β), f (x y) = f x f y) (inf : ∀ (x y : β), f (x y) = f x f y) :

          Pullback a LinearOrderedCommMonoid under an injective map. See note [reducible non-instances].

          Equations
          Instances For
            @[reducible, inline]
            abbrev Function.Injective.linearOrderedAddCommMonoid {α : Type u} [LinearOrderedAddCommMonoid α] {β : Type u_2} [Zero β] [Add β] [SMul β] [Max β] [Min β] (f : βα) (hf : Injective f) (one : f 0 = 0) (mul : ∀ (x y : β), f (x + y) = f x + f y) (npow : ∀ (x : β) (n : ), f (n x) = n f x) (sup : ∀ (x y : β), f (x y) = f x f y) (inf : ∀ (x y : β), f (x y) = f x f y) :

            Pullback an OrderedAddCommMonoid under an injective map.

            Equations
            Instances For
              @[reducible, inline]
              abbrev Function.Injective.linearOrderedCancelCommMonoid {α : Type u} {β : Type u_1} [LinearOrderedCancelCommMonoid α] [One β] [Mul β] [Pow β ] [Max β] [Min β] (f : βα) (hf : Injective f) (one : f 1 = 1) (mul : ∀ (x y : β), f (x * y) = f x * f y) (npow : ∀ (x : β) (n : ), f (x ^ n) = f x ^ n) (hsup : ∀ (x y : β), f (x y) = f x f y) (hinf : ∀ (x y : β), f (x y) = f x f y) :

              Pullback a LinearOrderedCancelCommMonoid under an injective map. See note [reducible non-instances].

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[reducible, inline]
                abbrev Function.Injective.linearOrderedCancelAddCommMonoid {α : Type u} {β : Type u_1} [LinearOrderedCancelAddCommMonoid α] [Zero β] [Add β] [SMul β] [Max β] [Min β] (f : βα) (hf : Injective f) (one : f 0 = 0) (mul : ∀ (x y : β), f (x + y) = f x + f y) (npow : ∀ (x : β) (n : ), f (n x) = n f x) (hsup : ∀ (x y : β), f (x y) = f x f y) (hinf : ∀ (x y : β), f (x y) = f x f y) :

                Pullback a LinearOrderedCancelAddCommMonoid under an injective map.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  def OrderEmbedding.mulLeft {α : Type u_2} [Mul α] [LinearOrder α] [MulLeftStrictMono α] (m : α) :
                  α ↪o α

                  The order embedding sending b to a * b, for some fixed a. See also OrderIso.mulLeft when working in an ordered group.

                  Equations
                  Instances For
                    def OrderEmbedding.addLeft {α : Type u_2} [Add α] [LinearOrder α] [AddLeftStrictMono α] (m : α) :
                    α ↪o α

                    The order embedding sending b to a + b, for some fixed a. See also OrderIso.addLeft when working in an additive ordered group.

                    Equations
                    Instances For
                      @[simp]
                      theorem OrderEmbedding.mulLeft_apply {α : Type u_2} [Mul α] [LinearOrder α] [MulLeftStrictMono α] (m n : α) :
                      (mulLeft m) n = m * n
                      @[simp]
                      theorem OrderEmbedding.addLeft_apply {α : Type u_2} [Add α] [LinearOrder α] [AddLeftStrictMono α] (m n : α) :
                      (addLeft m) n = m + n
                      def OrderEmbedding.mulRight {α : Type u_2} [Mul α] [LinearOrder α] [MulRightStrictMono α] (m : α) :
                      α ↪o α

                      The order embedding sending b to b * a, for some fixed a. See also OrderIso.mulRight when working in an ordered group.

                      Equations
                      Instances For
                        def OrderEmbedding.addRight {α : Type u_2} [Add α] [LinearOrder α] [AddRightStrictMono α] (m : α) :
                        α ↪o α

                        The order embedding sending b to b + a, for some fixed a. See also OrderIso.addRight when working in an additive ordered group.

                        Equations
                        Instances For
                          @[simp]
                          theorem OrderEmbedding.mulRight_apply {α : Type u_2} [Mul α] [LinearOrder α] [MulRightStrictMono α] (m n : α) :
                          (mulRight m) n = n * m
                          @[simp]
                          theorem OrderEmbedding.addRight_apply {α : Type u_2} [Add α] [LinearOrder α] [AddRightStrictMono α] (m n : α) :
                          (addRight m) n = n + m