Pulling back ordered rings along injective maps #
@[reducible, inline]
abbrev
Function.Injective.orderedSemiring
{α : Type u_1}
{β : Type u_2}
[Zero β]
[One β]
[Add β]
[Mul β]
[SMul ℕ β]
[Pow β ℕ]
[NatCast β]
(f : β → α)
(hf : Injective f)
[OrderedSemiring α]
(zero : f 0 = 0)
(one : f 1 = 1)
(add : ∀ (x y : β), f (x + y) = f x + f y)
(mul : ∀ (x y : β), f (x * y) = f x * f y)
(nsmul : ∀ (n : ℕ) (x : β), f (n • x) = n • f x)
(npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n)
(natCast : ∀ (n : ℕ), f ↑n = ↑n)
:
Pullback an OrderedSemiring
under an injective map.
Equations
- Function.Injective.orderedSemiring f hf zero one add mul nsmul npow natCast = OrderedSemiring.mk ⋯ ⋯ ⋯ ⋯
Instances For
@[reducible, inline]
abbrev
Function.Injective.orderedCommSemiring
{α : Type u_1}
{β : Type u_2}
[Zero β]
[One β]
[Add β]
[Mul β]
[SMul ℕ β]
[Pow β ℕ]
[NatCast β]
(f : β → α)
(hf : Injective f)
[OrderedCommSemiring α]
(zero : f 0 = 0)
(one : f 1 = 1)
(add : ∀ (x y : β), f (x + y) = f x + f y)
(mul : ∀ (x y : β), f (x * y) = f x * f y)
(nsmul : ∀ (n : ℕ) (x : β), f (n • x) = n • f x)
(npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n)
(natCast : ∀ (n : ℕ), f ↑n = ↑n)
:
Pullback an OrderedCommSemiring
under an injective map.
Equations
- Function.Injective.orderedCommSemiring f hf zero one add mul nsmul npow natCast = OrderedCommSemiring.mk ⋯
Instances For
@[reducible, inline]
abbrev
Function.Injective.orderedRing
{α : Type u_1}
{β : Type u_2}
[Zero β]
[One β]
[Add β]
[Mul β]
[Neg β]
[Sub β]
[SMul ℕ β]
[SMul ℤ β]
[Pow β ℕ]
[NatCast β]
[IntCast β]
(f : β → α)
(hf : Injective f)
[OrderedRing α]
(zero : f 0 = 0)
(one : f 1 = 1)
(add : ∀ (x y : β), f (x + y) = f x + f y)
(mul : ∀ (x y : β), f (x * y) = f x * f y)
(neg : ∀ (x : β), f (-x) = -f x)
(sub : ∀ (x y : β), f (x - y) = f x - f y)
(nsmul : ∀ (n : ℕ) (x : β), f (n • x) = n • f x)
(zsmul : ∀ (n : ℤ) (x : β), f (n • x) = n • f x)
(npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n)
(natCast : ∀ (n : ℕ), f ↑n = ↑n)
(intCast : ∀ (n : ℤ), f ↑n = ↑n)
:
Pullback an OrderedRing
under an injective map.
Equations
- Function.Injective.orderedRing f hf zero one add mul neg sub nsmul zsmul npow natCast intCast = OrderedRing.mk ⋯ ⋯ ⋯
Instances For
@[reducible, inline]
abbrev
Function.Injective.orderedCommRing
{α : Type u_1}
{β : Type u_2}
[Zero β]
[One β]
[Add β]
[Mul β]
[Neg β]
[Sub β]
[SMul ℕ β]
[SMul ℤ β]
[Pow β ℕ]
[NatCast β]
[IntCast β]
(f : β → α)
(hf : Injective f)
[OrderedCommRing α]
(zero : f 0 = 0)
(one : f 1 = 1)
(add : ∀ (x y : β), f (x + y) = f x + f y)
(mul : ∀ (x y : β), f (x * y) = f x * f y)
(neg : ∀ (x : β), f (-x) = -f x)
(sub : ∀ (x y : β), f (x - y) = f x - f y)
(nsmul : ∀ (n : ℕ) (x : β), f (n • x) = n • f x)
(zsmul : ∀ (n : ℤ) (x : β), f (n • x) = n • f x)
(npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n)
(natCast : ∀ (n : ℕ), f ↑n = ↑n)
(intCast : ∀ (n : ℤ), f ↑n = ↑n)
:
Pullback an OrderedCommRing
under an injective map.
Equations
- Function.Injective.orderedCommRing f hf zero one add mul neg sub nsmul zsmul npow natCast intCast = OrderedCommRing.mk ⋯
Instances For
@[reducible, inline]
abbrev
Function.Injective.strictOrderedSemiring
{α : Type u_1}
{β : Type u_2}
[Zero β]
[One β]
[Add β]
[Mul β]
[SMul ℕ β]
[Pow β ℕ]
[NatCast β]
(f : β → α)
(hf : Injective f)
[StrictOrderedSemiring α]
(zero : f 0 = 0)
(one : f 1 = 1)
(add : ∀ (x y : β), f (x + y) = f x + f y)
(mul : ∀ (x y : β), f (x * y) = f x * f y)
(nsmul : ∀ (n : ℕ) (x : β), f (n • x) = n • f x)
(npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n)
(natCast : ∀ (n : ℕ), f ↑n = ↑n)
:
Pullback a StrictOrderedSemiring
under an injective map.
Equations
- Function.Injective.strictOrderedSemiring f hf zero one add mul nsmul npow natCast = StrictOrderedSemiring.mk ⋯ ⋯ ⋯ ⋯ ⋯
Instances For
@[reducible, inline]
abbrev
Function.Injective.strictOrderedCommSemiring
{α : Type u_1}
{β : Type u_2}
[Zero β]
[One β]
[Add β]
[Mul β]
[SMul ℕ β]
[Pow β ℕ]
[NatCast β]
(f : β → α)
(hf : Injective f)
[StrictOrderedCommSemiring α]
(zero : f 0 = 0)
(one : f 1 = 1)
(add : ∀ (x y : β), f (x + y) = f x + f y)
(mul : ∀ (x y : β), f (x * y) = f x * f y)
(nsmul : ∀ (n : ℕ) (x : β), f (n • x) = n • f x)
(npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n)
(natCast : ∀ (n : ℕ), f ↑n = ↑n)
:
Pullback a strictOrderedCommSemiring
under an injective map.
Equations
- Function.Injective.strictOrderedCommSemiring f hf zero one add mul nsmul npow natCast = StrictOrderedCommSemiring.mk ⋯
Instances For
@[reducible, inline]
abbrev
Function.Injective.strictOrderedRing
{α : Type u_1}
{β : Type u_2}
[Zero β]
[One β]
[Add β]
[Mul β]
[Neg β]
[Sub β]
[SMul ℕ β]
[SMul ℤ β]
[Pow β ℕ]
[NatCast β]
[IntCast β]
(f : β → α)
(hf : Injective f)
[StrictOrderedRing α]
(zero : f 0 = 0)
(one : f 1 = 1)
(add : ∀ (x y : β), f (x + y) = f x + f y)
(mul : ∀ (x y : β), f (x * y) = f x * f y)
(neg : ∀ (x : β), f (-x) = -f x)
(sub : ∀ (x y : β), f (x - y) = f x - f y)
(nsmul : ∀ (n : ℕ) (x : β), f (n • x) = n • f x)
(zsmul : ∀ (n : ℤ) (x : β), f (n • x) = n • f x)
(npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n)
(natCast : ∀ (n : ℕ), f ↑n = ↑n)
(intCast : ∀ (n : ℤ), f ↑n = ↑n)
:
Pullback a StrictOrderedRing
under an injective map.
Equations
- Function.Injective.strictOrderedRing f hf zero one add mul neg sub nsmul zsmul npow natCast intCast = StrictOrderedRing.mk ⋯ ⋯ ⋯
Instances For
@[reducible, inline]
abbrev
Function.Injective.strictOrderedCommRing
{α : Type u_1}
{β : Type u_2}
[Zero β]
[One β]
[Add β]
[Mul β]
[Neg β]
[Sub β]
[SMul ℕ β]
[SMul ℤ β]
[Pow β ℕ]
[NatCast β]
[IntCast β]
(f : β → α)
(hf : Injective f)
[StrictOrderedCommRing α]
(zero : f 0 = 0)
(one : f 1 = 1)
(add : ∀ (x y : β), f (x + y) = f x + f y)
(mul : ∀ (x y : β), f (x * y) = f x * f y)
(neg : ∀ (x : β), f (-x) = -f x)
(sub : ∀ (x y : β), f (x - y) = f x - f y)
(nsmul : ∀ (n : ℕ) (x : β), f (n • x) = n • f x)
(zsmul : ∀ (n : ℤ) (x : β), f (n • x) = n • f x)
(npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n)
(natCast : ∀ (n : ℕ), f ↑n = ↑n)
(intCast : ∀ (n : ℤ), f ↑n = ↑n)
:
Pullback a StrictOrderedCommRing
under an injective map.
Equations
- Function.Injective.strictOrderedCommRing f hf zero one add mul neg sub nsmul zsmul npow natCast intCast = StrictOrderedCommRing.mk ⋯
Instances For
@[reducible, inline]
abbrev
Function.Injective.linearOrderedSemiring
{α : Type u_1}
{β : Type u_2}
[Zero β]
[One β]
[Add β]
[Mul β]
[SMul ℕ β]
[Pow β ℕ]
[NatCast β]
[Max β]
[Min β]
(f : β → α)
(hf : Injective f)
[LinearOrderedSemiring α]
(zero : f 0 = 0)
(one : f 1 = 1)
(add : ∀ (x y : β), f (x + y) = f x + f y)
(mul : ∀ (x y : β), f (x * y) = f x * f y)
(nsmul : ∀ (n : ℕ) (x : β), f (n • x) = n • f x)
(npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n)
(natCast : ∀ (n : ℕ), f ↑n = ↑n)
(sup : ∀ (x y : β), f (x ⊔ y) = f x ⊔ f y)
(inf : ∀ (x y : β), f (x ⊓ y) = f x ⊓ f y)
:
Pullback a LinearOrderedSemiring
under an injective map.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
abbrev
Function.Injective.linearOrderedCommSemiring
{α : Type u_1}
{β : Type u_2}
[Zero β]
[One β]
[Add β]
[Mul β]
[SMul ℕ β]
[Pow β ℕ]
[NatCast β]
[Max β]
[Min β]
(f : β → α)
(hf : Injective f)
[LinearOrderedCommSemiring α]
(zero : f 0 = 0)
(one : f 1 = 1)
(add : ∀ (x y : β), f (x + y) = f x + f y)
(mul : ∀ (x y : β), f (x * y) = f x * f y)
(nsmul : ∀ (n : ℕ) (x : β), f (n • x) = n • f x)
(npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n)
(natCast : ∀ (n : ℕ), f ↑n = ↑n)
(hsup : ∀ (x y : β), f (x ⊔ y) = f x ⊔ f y)
(hinf : ∀ (x y : β), f (x ⊓ y) = f x ⊓ f y)
:
Pullback a LinearOrderedSemiring
under an injective map.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
abbrev
Function.Injective.linearOrderedRing
{α : Type u_1}
{β : Type u_2}
[Zero β]
[One β]
[Add β]
[Mul β]
[Neg β]
[Sub β]
[SMul ℕ β]
[SMul ℤ β]
[Pow β ℕ]
[NatCast β]
[IntCast β]
[Max β]
[Min β]
(f : β → α)
(hf : Injective f)
[LinearOrderedRing α]
(zero : f 0 = 0)
(one : f 1 = 1)
(add : ∀ (x y : β), f (x + y) = f x + f y)
(mul : ∀ (x y : β), f (x * y) = f x * f y)
(neg : ∀ (x : β), f (-x) = -f x)
(sub : ∀ (x y : β), f (x - y) = f x - f y)
(nsmul : ∀ (n : ℕ) (x : β), f (n • x) = n • f x)
(zsmul : ∀ (n : ℤ) (x : β), f (n • x) = n • f x)
(npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n)
(natCast : ∀ (n : ℕ), f ↑n = ↑n)
(intCast : ∀ (n : ℤ), f ↑n = ↑n)
(hsup : ∀ (x y : β), f (x ⊔ y) = f x ⊔ f y)
(hinf : ∀ (x y : β), f (x ⊓ y) = f x ⊓ f y)
:
Pullback a LinearOrderedRing
under an injective map.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
abbrev
Function.Injective.linearOrderedCommRing
{α : Type u_1}
{β : Type u_2}
[Zero β]
[One β]
[Add β]
[Mul β]
[Neg β]
[Sub β]
[SMul ℕ β]
[SMul ℤ β]
[Pow β ℕ]
[NatCast β]
[IntCast β]
[Max β]
[Min β]
(f : β → α)
(hf : Injective f)
[LinearOrderedCommRing α]
(zero : f 0 = 0)
(one : f 1 = 1)
(add : ∀ (x y : β), f (x + y) = f x + f y)
(mul : ∀ (x y : β), f (x * y) = f x * f y)
(neg : ∀ (x : β), f (-x) = -f x)
(sub : ∀ (x y : β), f (x - y) = f x - f y)
(nsmul : ∀ (n : ℕ) (x : β), f (n • x) = n • f x)
(zsmul : ∀ (n : ℤ) (x : β), f (n • x) = n • f x)
(npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n)
(natCast : ∀ (n : ℕ), f ↑n = ↑n)
(intCast : ∀ (n : ℤ), f ↑n = ↑n)
(sup : ∀ (x y : β), f (x ⊔ y) = f x ⊔ f y)
(inf : ∀ (x y : β), f (x ⊓ y) = f x ⊓ f y)
:
Pullback a LinearOrderedCommRing
under an injective map.
Equations
- Function.Injective.linearOrderedCommRing f hf zero one add mul neg sub nsmul zsmul npow natCast intCast sup inf = LinearOrderedCommRing.mk ⋯