Documentation

Mathlib.Algebra.Polynomial.Splits

Split polynomials #

A polynomial f : K[X] splits over a field extension L of K if it is zero or all of its irreducible factors over L have degree 1.

Main definitions #

theorem Polynomial.splits_of_map_eq_C {K : Type v} {L : Type w} [CommRing K] [Field L] (i : K →+* L) {f : Polynomial K} {a : L} (h : map i f = C a) :
(map i f).Splits
theorem Polynomial.splits_C {K : Type v} [CommRing K] (a : K) :
(C a).Splits
theorem Polynomial.splits_of_map_degree_eq_one {K : Type v} {L : Type w} [CommRing K] [Field L] (i : K →+* L) {f : Polynomial K} (hf : (map i f).degree = 1) :
(map i f).Splits
theorem Polynomial.splits_of_degree_le_one {K : Type v} {L : Type w} [CommRing K] [Field L] (i : K →+* L) {f : Polynomial K} (hf : f.degree 1) :
(map i f).Splits
theorem Polynomial.splits_of_degree_eq_one {K : Type v} {L : Type w} [CommRing K] [Field L] (i : K →+* L) {f : Polynomial K} (hf : f.degree = 1) :
(map i f).Splits
theorem Polynomial.splits_of_natDegree_le_one {K : Type v} {L : Type w} [CommRing K] [Field L] (i : K →+* L) {f : Polynomial K} (hf : f.natDegree 1) :
(map i f).Splits
theorem Polynomial.splits_of_natDegree_eq_one {K : Type v} {L : Type w} [CommRing K] [Field L] (i : K →+* L) {f : Polynomial K} (hf : f.natDegree = 1) :
(map i f).Splits
theorem Polynomial.splits_mul {K : Type v} {L : Type w} [CommRing K] [Field L] (i : K →+* L) {f g : Polynomial K} (hf : (map i f).Splits) (hg : (map i g).Splits) :
(map i (f * g)).Splits
theorem Polynomial.splits_of_splits_mul' {K : Type v} {L : Type w} [CommRing K] [Field L] (i : K →+* L) {f g : Polynomial K} (hfg : map i (f * g) 0) (h : (map i (f * g)).Splits) :
(map i f).Splits (map i g).Splits
theorem Polynomial.splits_map_iff {F : Type u} {K : Type v} [CommRing K] [Field F] {L : Type u_2} [CommRing L] (i : K →+* L) (j : L →+* F) {f : Polynomial K} :
(map j (map i f)).Splits (map (j.comp i) f).Splits
theorem Polynomial.splits_one {K : Type v} {L : Type w} [CommRing K] [Field L] (i : K →+* L) :
(map i 1).Splits
theorem Polynomial.splits_of_isUnit {K : Type v} {L : Type w} [CommRing K] [Field L] (i : K →+* L) [IsDomain K] {u : Polynomial K} (hu : IsUnit u) :
(map i u).Splits
theorem Polynomial.splits_X_sub_C {K : Type v} {L : Type w} [CommRing K] [Field L] (i : K →+* L) {x : K} :
(map i (X - C x)).Splits
theorem Polynomial.splits_X {K : Type v} {L : Type w} [CommRing K] [Field L] (i : K →+* L) :
theorem Polynomial.splits_prod {K : Type v} {L : Type w} [CommRing K] [Field L] (i : K →+* L) {ι : Type u} {s : ιPolynomial K} {t : Finset ι} :
(∀ jt, (map i (s j)).Splits)(map i (∏ xt, s x)).Splits
theorem Polynomial.splits_pow {K : Type v} {L : Type w} [CommRing K] [Field L] (i : K →+* L) {f : Polynomial K} (hf : (map i f).Splits) (n : ) :
(map i (f ^ n)).Splits
theorem Polynomial.splits_X_pow {K : Type v} {L : Type w} [CommRing K] [Field L] (i : K →+* L) (n : ) :
(map i (X ^ n)).Splits
theorem Polynomial.splits_id_iff_splits {K : Type v} {L : Type w} [CommRing K] [Field L] (i : K →+* L) {f : Polynomial K} :
(map (RingHom.id L) (map i f)).Splits (map i f).Splits
theorem Polynomial.Splits.comp_of_map_degree_le_one {K : Type v} {L : Type w} [CommRing K] [Field L] {i : K →+* L} {f p : Polynomial K} (hd : (map i p).degree 1) (h : (map i f).Splits) :
(map i (f.comp p)).Splits
theorem Polynomial.splits_iff_comp_splits_of_degree_eq_one {K : Type v} {L : Type w} [CommRing K] [Field L] {i : K →+* L} {f p : Polynomial K} (hd : (map i p).degree = 1) :
(map i f).Splits (map i (f.comp p)).Splits
theorem Polynomial.Splits.comp_of_degree_le_one {K : Type v} {L : Type w} [CommRing K] [Field L] {i : K →+* L} {f p : Polynomial K} (hd : p.degree 1) (h : (map i f).Splits) :
(map i (f.comp p)).Splits

This is a weaker variant of Splits.comp_of_map_degree_le_one, but its conditions are easier to check.

theorem Polynomial.Splits.comp_X_sub_C {K : Type v} {L : Type w} [CommRing K] [Field L] {i : K →+* L} (a : K) {f : Polynomial K} (h : (map i f).Splits) :
(map i (f.comp (X - C a))).Splits
theorem Polynomial.Splits.comp_X_add_C {K : Type v} {L : Type w} [CommRing K] [Field L] {i : K →+* L} (a : K) {f : Polynomial K} (h : (map i f).Splits) :
(map i (f.comp (X + C a))).Splits
theorem Polynomial.Splits.comp_neg_X {K : Type v} {L : Type w} [CommRing K] [Field L] {i : K →+* L} {f : Polynomial K} (h : (map i f).Splits) :
(map i (f.comp (-X))).Splits
theorem Polynomial.exists_root_of_splits' {K : Type v} {L : Type w} [CommRing K] [Field L] (i : K →+* L) {f : Polynomial K} (hs : (map i f).Splits) (hf0 : (map i f).degree 0) :
∃ (x : L), eval₂ i x f = 0
theorem Polynomial.roots_ne_zero_of_splits' {K : Type v} {L : Type w} [CommRing K] [Field L] (i : K →+* L) {f : Polynomial K} (hs : (map i f).Splits) (hf0 : (map i f).natDegree 0) :
(map i f).roots 0
def Polynomial.rootOfSplits' {K : Type v} {L : Type w} [CommRing K] [Field L] (i : K →+* L) {f : Polynomial K} (hf : (map i f).Splits) (hfd : (map i f).degree 0) :
L

Pick a root of a polynomial that splits. See rootOfSplits for polynomials over a field which has simpler assumptions.

Equations
Instances For
    theorem Polynomial.map_rootOfSplits' {K : Type v} {L : Type w} [CommRing K] [Field L] (i : K →+* L) {f : Polynomial K} (hf : (map i f).Splits) (hfd : (map i f).degree 0) :
    eval₂ i (rootOfSplits' i hf hfd) f = 0
    theorem Polynomial.natDegree_eq_card_roots' {K : Type v} {L : Type w} [CommRing K] [Field L] {p : Polynomial K} {i : K →+* L} (hsplit : (map i p).Splits) :
    (map i p).natDegree = (map i p).roots.card
    theorem Polynomial.degree_eq_card_roots' {K : Type v} {L : Type w} [CommRing K] [Field L] {p : Polynomial K} {i : K →+* L} (p_ne_zero : map i p 0) (hsplit : (map i p).Splits) :
    (map i p).degree = (map i p).roots.card
    theorem Polynomial.aeval_root_of_mapAlg_eq_multiset_prod_X_sub_C {R : Type u_1} {L : Type w} [CommSemiring R] [CommRing L] [Algebra R L] (s : Multiset L) {x : L} (hx : x s) {p : Polynomial R} (hp : (mapAlg R L) p = (Multiset.map (fun (a : L) => X - C a) s).prod) :
    (aeval x) p = 0
    theorem Polynomial.splits_iff {K : Type v} {L : Type w} [Field K] [Field L] (i : K →+* L) (f : Polynomial K) :
    (map i f).Splits f = 0 ∀ {g : Polynomial L}, Irreducible gg map i fg.degree = 1

    This lemma is for polynomials over a field.

    theorem Polynomial.Splits.def {K : Type v} {L : Type w} [Field K] [Field L] {i : K →+* L} {f : Polynomial K} (h : (map i f).Splits) :
    f = 0 ∀ {g : Polynomial L}, Irreducible gg map i fg.degree = 1

    This lemma is for polynomials over a field.

    theorem Polynomial.splits_of_splits_mul {K : Type v} {L : Type w} [Field K] [Field L] (i : K →+* L) {f g : Polynomial K} (hfg : f * g 0) (h : (map i (f * g)).Splits) :
    (map i f).Splits (map i g).Splits
    theorem Polynomial.splits_of_splits_of_dvd {K : Type v} {L : Type w} [Field K] [Field L] (i : K →+* L) {f g : Polynomial K} (hf0 : f 0) (hf : (map i f).Splits) (hgf : g f) :
    (map i g).Splits
    theorem Polynomial.splits_of_splits_gcd_left {K : Type v} {L : Type w} [Field K] [Field L] (i : K →+* L) [DecidableEq K] {f g : Polynomial K} (hf0 : f 0) (hf : (map i f).Splits) :
    theorem Polynomial.splits_of_splits_gcd_right {K : Type v} {L : Type w} [Field K] [Field L] (i : K →+* L) [DecidableEq K] {f g : Polynomial K} (hg0 : g 0) (hg : (map i g).Splits) :
    theorem Polynomial.splits_prod_iff {K : Type v} {L : Type w} [Field K] [Field L] (i : K →+* L) {ι : Type u} {s : ιPolynomial K} {t : Finset ι} :
    (∀ jt, s j 0) → ((map i (∏ xt, s x)).Splits jt, (map i (s j)).Splits)
    theorem Polynomial.exists_root_of_splits {K : Type v} {L : Type w} [Field K] [Field L] (i : K →+* L) {f : Polynomial K} (hs : (map i f).Splits) (hf0 : f.degree 0) :
    ∃ (x : L), eval₂ i x f = 0
    theorem Polynomial.roots_ne_zero_of_splits {K : Type v} {L : Type w} [Field K] [Field L] (i : K →+* L) {f : Polynomial K} (hs : (map i f).Splits) (hf0 : f.natDegree 0) :
    (map i f).roots 0
    def Polynomial.rootOfSplits {K : Type v} {L : Type w} [Field K] [Field L] (i : K →+* L) {f : Polynomial K} (hf : (map i f).Splits) (hfd : f.degree 0) :
    L

    Pick a root of a polynomial that splits. This version is for polynomials over a field and has simpler assumptions.

    Equations
    Instances For
      theorem Polynomial.rootOfSplits'_eq_rootOfSplits {K : Type v} {L : Type w} [Field K] [Field L] (i : K →+* L) {f : Polynomial K} (hf : (map i f).Splits) (hfd : (map i f).degree 0) :
      rootOfSplits' i hf hfd = rootOfSplits i hf

      rootOfSplits' is definitionally equal to rootOfSplits.

      theorem Polynomial.map_rootOfSplits {K : Type v} {L : Type w} [Field K] [Field L] (i : K →+* L) {f : Polynomial K} (hf : (map i f).Splits) (hfd : f.degree 0) :
      eval₂ i (rootOfSplits i hf hfd) f = 0
      theorem Polynomial.natDegree_eq_card_roots {K : Type v} {L : Type w} [Field K] [Field L] {p : Polynomial K} {i : K →+* L} (hsplit : (map i p).Splits) :
      theorem Polynomial.degree_eq_card_roots {K : Type v} {L : Type w} [Field K] [Field L] {p : Polynomial K} {i : K →+* L} (p_ne_zero : p 0) (hsplit : (map i p).Splits) :
      p.degree = (map i p).roots.card
      theorem Polynomial.roots_map {K : Type v} {L : Type w} [Field K] [Field L] (i : K →+* L) {f : Polynomial K} (hf : (map (RingHom.id K) f).Splits) :
      (map i f).roots = Multiset.map (⇑i) f.roots
      theorem Polynomial.Splits.mem_subfield_of_isRoot {K : Type v} [Field K] (F : Subfield K) {f : Polynomial F} (hnz : f 0) (hf : (map (RingHom.id F) f).Splits) {x : K} (hx : (map F.subtype f).IsRoot x) :
      x F
      theorem Polynomial.image_rootSet {R : Type u_1} {K : Type v} {L : Type w} [CommRing R] [Field K] [Field L] [Algebra R K] [Algebra R L] {p : Polynomial R} (h : (map (algebraMap R K) p).Splits) (f : K →ₐ[R] L) :
      f '' p.rootSet K = p.rootSet L
      theorem Polynomial.adjoin_rootSet_eq_range {R : Type u_1} {K : Type v} {L : Type w} [CommRing R] [Field K] [Field L] [Algebra R K] [Algebra R L] {p : Polynomial R} (h : (map (algebraMap R K) p).Splits) (f : K →ₐ[R] L) :
      theorem Polynomial.eq_prod_roots_of_splits {K : Type v} {L : Type w} [Field K] [Field L] {p : Polynomial K} {i : K →+* L} (hsplit : (map i p).Splits) :
      map i p = C (i p.leadingCoeff) * (Multiset.map (fun (a : L) => X - C a) (map i p).roots).prod
      theorem Polynomial.eq_prod_roots_of_splits_id {K : Type v} [Field K] {p : Polynomial K} (hsplit : (map (RingHom.id K) p).Splits) :
      p = C p.leadingCoeff * (Multiset.map (fun (a : K) => X - C a) p.roots).prod
      theorem Polynomial.Splits.dvd_of_roots_le_roots {K : Type v} [Field K] {p q : Polynomial K} (hp : (map (RingHom.id K) p).Splits) (hp0 : p 0) (hq : p.roots q.roots) :
      p q
      theorem Polynomial.Splits.dvd_iff_roots_le_roots {K : Type v} [Field K] {p q : Polynomial K} (hp : (map (RingHom.id K) p).Splits) (hp0 : p 0) (hq0 : q 0) :
      theorem Polynomial.aeval_eq_prod_aroots_sub_of_splits {K : Type v} {L : Type w} [Field K] [Field L] [Algebra K L] {p : Polynomial K} (hsplit : (map (algebraMap K L) p).Splits) (v : L) :
      (aeval v) p = (algebraMap K L) p.leadingCoeff * (Multiset.map (fun (a : L) => v - a) (p.aroots L)).prod
      theorem Polynomial.eval_eq_prod_roots_sub_of_splits_id {K : Type v} [Field K] {p : Polynomial K} (hsplit : (map (RingHom.id K) p).Splits) (v : K) :
      eval v p = p.leadingCoeff * (Multiset.map (fun (a : K) => v - a) p.roots).prod
      theorem Polynomial.eq_prod_roots_of_monic_of_splits_id {K : Type v} [Field K] {p : Polynomial K} (m : p.Monic) (hsplit : (map (RingHom.id K) p).Splits) :
      p = (Multiset.map (fun (a : K) => X - C a) p.roots).prod
      theorem Polynomial.aeval_eq_prod_aroots_sub_of_monic_of_splits {K : Type v} {L : Type w} [Field K] [Field L] [Algebra K L] {p : Polynomial K} (m : p.Monic) (hsplit : (map (algebraMap K L) p).Splits) (v : L) :
      (aeval v) p = (Multiset.map (fun (a : L) => v - a) (p.aroots L)).prod
      theorem Polynomial.eval_eq_prod_roots_sub_of_monic_of_splits_id {K : Type v} [Field K] {p : Polynomial K} (m : p.Monic) (hsplit : (map (RingHom.id K) p).Splits) (v : K) :
      eval v p = (Multiset.map (fun (a : K) => v - a) p.roots).prod
      theorem Polynomial.eq_X_sub_C_of_splits_of_single_root {K : Type v} {L : Type w} [Field K] [Field L] (i : K →+* L) {x : K} {h : Polynomial K} (h_splits : (map i h).Splits) (h_roots : (map i h).roots = {i x}) :
      h = C h.leadingCoeff * (X - C x)
      theorem Polynomial.mem_lift_of_splits_of_roots_mem_range (R : Type u_1) {K : Type v} [CommRing R] [Field K] [Algebra R K] {f : Polynomial K} (hs : (map (RingHom.id K) f).Splits) (hm : f.Monic) (hr : af.roots, a (algebraMap R K).range) :
      theorem Polynomial.splits_of_natDegree_eq_two {K : Type v} {L : Type w} [Field K] [Field L] (i : K →+* L) {f : Polynomial K} {x : L} (h₁ : f.natDegree = 2) (h₂ : eval₂ i x f = 0) :
      (map i f).Splits

      A polynomial of degree 2 with a root splits.

      theorem Polynomial.splits_of_degree_eq_two {K : Type v} {L : Type w} [Field K] [Field L] (i : K →+* L) {f : Polynomial K} {x : L} (h₁ : f.degree = 2) (h₂ : eval₂ i x f = 0) :
      (map i f).Splits
      theorem Polynomial.splits_of_exists_multiset {K : Type v} {L : Type w} [Field K] [Field L] (i : K →+* L) {f : Polynomial K} {s : Multiset L} (hs : map i f = C (i f.leadingCoeff) * (Multiset.map (fun (a : L) => X - C a) s).prod) :
      (map i f).Splits
      theorem Polynomial.splits_of_splits_id {K : Type v} {L : Type w} [Field K] [Field L] (i : K →+* L) {f : Polynomial K} (h : (map (RingHom.id K) f).Splits) :
      (map i f).Splits
      theorem Polynomial.splits_of_comp {F : Type u} {K : Type v} {L : Type w} [Field K] [Field L] [Field F] (i : K →+* L) (j : L →+* F) {f : Polynomial K} (h : (map (j.comp i) f).Splits) (roots_mem_range : a(map (j.comp i) f).roots, a j.range) :
      (map i f).Splits
      theorem Polynomial.splits_id_of_splits {K : Type v} {L : Type w} [Field K] [Field L] (i : K →+* L) {f : Polynomial K} (h : (map i f).Splits) (roots_mem_range : a(map i f).roots, a i.range) :
      theorem Polynomial.splits_comp_of_splits {R : Type u_1} {K : Type v} {L : Type w} [CommRing R] [Field K] [Field L] (i : R →+* K) (j : K →+* L) {f : Polynomial R} (h : (map i f).Splits) :
      (map (j.comp i) f).Splits
      theorem Polynomial.splits_of_algHom {R : Type u_1} {K : Type v} {L : Type w} [CommRing R] [Field K] [Field L] [Algebra R K] [Algebra R L] {f : Polynomial R} (h : (map (algebraMap R K) f).Splits) (e : K →ₐ[R] L) :
      theorem Polynomial.splits_of_isScalarTower {R : Type u_1} {K : Type v} (L : Type w) [CommRing R] [Field K] [Field L] [Algebra R K] [Algebra R L] {f : Polynomial R} [Algebra K L] [IsScalarTower R K L] (h : (map (algebraMap R K) f).Splits) :

      A polynomial splits if and only if it has as many roots as its degree.

      theorem Polynomial.eval₂_derivative_of_splits {K : Type v} {L : Type w} [Field K] [Field L] [DecidableEq L] {P : Polynomial K} {f : K →+* L} (hP : (map f P).Splits) (x : L) :
      eval₂ f x (derivative P) = f P.leadingCoeff * (Multiset.map (fun (a : L) => (Multiset.map (fun (x_1 : L) => x - x_1) ((map f P).roots.erase a)).prod) (map f P).roots).sum
      theorem Polynomial.aeval_derivative_of_splits {K : Type v} {L : Type w} [Field K] [Field L] [Algebra K L] [DecidableEq L] {P : Polynomial K} (hP : (map (algebraMap K L) P).Splits) (r : L) :
      (aeval r) (derivative P) = (algebraMap K L) P.leadingCoeff * (Multiset.map (fun (a : L) => (Multiset.map (fun (x : L) => r - x) ((P.aroots L).erase a)).prod) (P.aroots L)).sum
      theorem Polynomial.eval_derivative_of_splits {K : Type v} [Field K] [DecidableEq K] {P : Polynomial K} (hP : (map (RingHom.id K) P).Splits) (r : K) :
      eval r (derivative P) = P.leadingCoeff * (Multiset.map (fun (a : K) => (Multiset.map (fun (x : K) => r - x) (P.roots.erase a)).prod) P.roots).sum
      theorem Polynomial.aeval_root_derivative_of_splits {K : Type v} {L : Type w} [Field K] [Field L] [Algebra K L] [DecidableEq L] {P : Polynomial K} (hmo : P.Monic) (hP : (map (algebraMap K L) P).Splits) {r : L} (hr : r P.aroots L) :
      (aeval r) (derivative P) = (Multiset.map (fun (a : L) => r - a) ((P.aroots L).erase r)).prod

      Let P be a monic polynomial over K that splits over L. Let r : L be a root of P. Then $P'(r) = \prod_{a}(r-a)$, where the product in the RHS is taken over all roots of P in L, with the multiplicity of r reduced by one.

      theorem Polynomial.eval_derivative_eq_eval_mul_sum_of_splits {K : Type v} [Field K] {p : Polynomial K} {x : K} (h : (map (RingHom.id K) p).Splits) (hx : eval x p 0) :
      eval x (derivative p) = eval x p * (Multiset.map (fun (z : K) => 1 / (x - z)) p.roots).sum
      theorem Polynomial.eval_derivative_div_eval_of_ne_zero_of_splits {K : Type v} [Field K] {p : Polynomial K} {x : K} (h : (map (RingHom.id K) p).Splits) (hx : eval x p 0) :
      eval x (derivative p) / eval x p = (Multiset.map (fun (z : K) => 1 / (x - z)) p.roots).sum

      If P is a monic polynomial that splits, then coeff P 0 equals the product of the roots.

      If P is a monic polynomial that splits, then P.nextCoeff equals the negative of the sum of the roots.

      @[deprecated Polynomial.coeff_zero_eq_prod_roots_of_monic_of_splits (since := "2025-10-08")]

      Alias of Polynomial.coeff_zero_eq_prod_roots_of_monic_of_splits.


      If P is a monic polynomial that splits, then coeff P 0 equals the product of the roots.

      @[deprecated Polynomial.nextCoeff_eq_neg_sum_roots_of_monic_of_splits (since := "2025-10-08")]

      Alias of Polynomial.nextCoeff_eq_neg_sum_roots_of_monic_of_splits.


      If P is a monic polynomial that splits, then P.nextCoeff equals the negative of the sum of the roots.