Documentation

Mathlib.AlgebraicGeometry.Morphisms.Etale

Étale morphisms #

A morphism of schemes f : X ⟶ Y is étale if for each affine U ⊆ Y and V ⊆ f ⁻¹' U, the induced map Γ(Y, U) ⟶ Γ(X, V) is étale.

Main results #

class AlgebraicGeometry.Etale {X Y : Scheme} (f : X Y) :

A morphism of schemes f : X ⟶ Y is étale if for each affine U ⊆ Y and V ⊆ f ⁻¹' U, The induced map Γ(Y, U) ⟶ Γ(X, V) is étale.

Instances
    theorem AlgebraicGeometry.etale_iff {X Y : Scheme} (f : X Y) :
    Etale f ∀ {U : Y.Opens}, IsAffineOpen U∀ {V : X.Opens}, IsAffineOpen V∀ (e : V (TopologicalSpace.Opens.map f.base).obj U), (CommRingCat.Hom.hom (Scheme.Hom.appLE f U V e)).Etale
    @[deprecated AlgebraicGeometry.Etale (since := "2026-02-09")]
    def AlgebraicGeometry.IsEtale {X Y : Scheme} (f : X Y) :

    Alias of AlgebraicGeometry.Etale.


    A morphism of schemes f : X ⟶ Y is étale if for each affine U ⊆ Y and V ⊆ f ⁻¹' U, The induced map Γ(Y, U) ⟶ Γ(X, V) is étale.

    Equations
    Instances For

      The property of scheme morphisms Etale is associated with the ring homomorphism property Etale.

      The composition of étale morphisms is étale.

      @[instance 900]

      Open immersions are étale.

      instance AlgebraicGeometry.Etale.instMorphismRestrict {X Y : Scheme} (f : X Y) (V : Y.Opens) [Etale f] :
      Etale (f ∣_ V)
      instance AlgebraicGeometry.Etale.instResLE {X Y : Scheme} (f : X Y) (U : X.Opens) (V : Y.Opens) (e : U (TopologicalSpace.Opens.map f.base).obj V) [Etale f] :
      @[instance 100]
      instance AlgebraicGeometry.Etale.instSmooth {X Y : Scheme} (f : X Y) [Etale f] :

      If f ≫ g is étale and g unramified, then f is étale.

      The category Etale X is the category of schemes étale over X.

      Equations
      Instances For

        The forgetful functor from schemes étale over X to schemes over X is fully faithful.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For