Morphisms of finite type #
A morphism of schemes f : X ⟶ Y
is locally of finite type if for each affine U ⊆ Y
and
V ⊆ f ⁻¹' U
, The induced map Γ(Y, U) ⟶ Γ(X, V)
is of finite type.
A morphism of schemes is of finite type if it is both locally of finite type and quasi-compact.
We show that these properties are local, and are stable under compositions and base change.
A morphism of schemes f : X ⟶ Y
is locally of finite type if for each affine U ⊆ Y
and
V ⊆ f ⁻¹' U
, The induced map Γ(Y, U) ⟶ Γ(X, V)
is of finite type.
- finiteType_of_affine_subset (U : ↑Y.affineOpens) (V : ↑X.affineOpens) (e : ↑V ≤ (TopologicalSpace.Opens.map f.base).obj ↑U) : (Scheme.Hom.appLE f (↑U) (↑V) e).hom.FiniteType
Instances
theorem
AlgebraicGeometry.locallyOfFiniteType_iff
{X Y : Scheme}
(f : X ⟶ Y)
:
LocallyOfFiniteType f ↔ ∀ (U : ↑Y.affineOpens) (V : ↑X.affineOpens) (e : ↑V ≤ (TopologicalSpace.Opens.map f.base).obj ↑U),
(Scheme.Hom.appLE f (↑U) (↑V) e).hom.FiniteType
instance
AlgebraicGeometry.instHasRingHomPropertyLocallyOfFiniteTypeFiniteType :
HasRingHomProperty @LocallyOfFiniteType fun {R S : Type u_1} [CommRing R] [CommRing S] => RingHom.FiniteType
@[instance 900]
instance
AlgebraicGeometry.locallyOfFiniteType_of_isOpenImmersion
{X Y : Scheme}
(f : X ⟶ Y)
[IsOpenImmersion f]
:
instance
AlgebraicGeometry.locallyOfFiniteType_comp
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[hf : LocallyOfFiniteType f]
[hg : LocallyOfFiniteType g]
:
theorem
AlgebraicGeometry.locallyOfFiniteType_of_comp
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[LocallyOfFiniteType (CategoryTheory.CategoryStruct.comp f g)]
:
instance
AlgebraicGeometry.instJacobsonSpaceαTopologicalSpaceCarrierCommRingCatSpecOfOfIsJacobsonRing
{R : Type u_1}
[CommRing R]
[IsJacobsonRing R]
:
JacobsonSpace ↑↑(Spec (CommRingCat.of R)).toPresheafedSpace
instance
AlgebraicGeometry.instJacobsonSpaceαTopologicalSpaceCarrierCommRingCatSpecOfIsJacobsonRingCarrier
{R : CommRingCat}
[IsJacobsonRing ↑R]
:
JacobsonSpace ↑↑(Spec R).toPresheafedSpace
theorem
AlgebraicGeometry.LocallyOfFiniteType.jacobsonSpace
{X Y : Scheme}
(f : X ⟶ Y)
[LocallyOfFiniteType f]
[JacobsonSpace ↑↑Y.toPresheafedSpace]
:
JacobsonSpace ↑↑X.toPresheafedSpace