Morphisms of finite type #
A morphism of schemes f : X ⟶ Y is locally of finite type if for each affine U ⊆ Y and
V ⊆ f ⁻¹' U, The induced map Γ(Y, U) ⟶ Γ(X, V) is of finite type.
A morphism of schemes is of finite type if it is both locally of finite type and quasi-compact.
We show that these properties are local, and are stable under compositions and base change.
A morphism of schemes f : X ⟶ Y is locally of finite type if for each affine U ⊆ Y and
V ⊆ f ⁻¹' U, The induced map Γ(Y, U) ⟶ Γ(X, V) is of finite type.
- finiteType_appLE {U : Y.Opens} : IsAffineOpen U → ∀ {V : X.Opens}, IsAffineOpen V → ∀ (e : V ≤ (TopologicalSpace.Opens.map f.base).obj U), (CommRingCat.Hom.hom (Scheme.Hom.appLE f U V e)).FiniteType
Instances
theorem
AlgebraicGeometry.locallyOfFiniteType_iff
{X Y : Scheme}
(f : X ⟶ Y)
:
LocallyOfFiniteType f ↔ ∀ {U : Y.Opens},
IsAffineOpen U →
∀ {V : X.Opens},
IsAffineOpen V →
∀ (e : V ≤ (TopologicalSpace.Opens.map f.base).obj U),
(CommRingCat.Hom.hom (Scheme.Hom.appLE f U V e)).FiniteType
theorem
AlgebraicGeometry.Scheme.Hom.finiteType_appLE
{X Y : Scheme}
(f : X ⟶ Y)
[self : LocallyOfFiniteType f]
{U : Y.Opens}
:
IsAffineOpen U →
∀ {V : X.Opens},
IsAffineOpen V →
∀ (e : V ≤ (TopologicalSpace.Opens.map f.base).obj U), (CommRingCat.Hom.hom (appLE f U V e)).FiniteType
Alias of AlgebraicGeometry.LocallyOfFiniteType.finiteType_appLE.
@[deprecated AlgebraicGeometry.Scheme.Hom.finiteType_appLE (since := "2026-01-20")]
theorem
AlgebraicGeometry.LocallyOfFiniteType.finiteType_of_affine_subset
{X Y : Scheme}
(f : X ⟶ Y)
[self : LocallyOfFiniteType f]
{U : Y.Opens}
:
IsAffineOpen U →
∀ {V : X.Opens},
IsAffineOpen V →
∀ (e : V ≤ (TopologicalSpace.Opens.map f.base).obj U), (CommRingCat.Hom.hom (Scheme.Hom.appLE f U V e)).FiniteType
Alias of AlgebraicGeometry.LocallyOfFiniteType.finiteType_appLE.
Alias of AlgebraicGeometry.LocallyOfFiniteType.finiteType_appLE.
instance
AlgebraicGeometry.instHasRingHomPropertyLocallyOfFiniteTypeFiniteType :
HasRingHomProperty @LocallyOfFiniteType fun {R S : Type u_1} [CommRing R] [CommRing S] => RingHom.FiniteType
@[instance 900]
instance
AlgebraicGeometry.locallyOfFiniteType_of_isOpenImmersion
{X Y : Scheme}
(f : X ⟶ Y)
[IsOpenImmersion f]
:
instance
AlgebraicGeometry.locallyOfFiniteType_comp
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[hf : LocallyOfFiniteType f]
[hg : LocallyOfFiniteType g]
:
theorem
AlgebraicGeometry.locallyOfFiniteType_of_comp
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[LocallyOfFiniteType (CategoryTheory.CategoryStruct.comp f g)]
:
instance
AlgebraicGeometry.instLocallyOfFiniteTypeFstScheme
{X Y S : Scheme}
(f : X ⟶ S)
(g : Y ⟶ S)
[LocallyOfFiniteType g]
:
instance
AlgebraicGeometry.instLocallyOfFiniteTypeSndScheme
{X Y S : Scheme}
(f : X ⟶ S)
(g : Y ⟶ S)
[LocallyOfFiniteType f]
:
instance
AlgebraicGeometry.instLocallyOfFiniteTypeMorphismRestrict
{X Y : Scheme}
(f : X ⟶ Y)
(V : Y.Opens)
[LocallyOfFiniteType f]
:
LocallyOfFiniteType (f ∣_ V)
instance
AlgebraicGeometry.instLocallyOfFiniteTypeResLE
{X Y : Scheme}
(f : X ⟶ Y)
(U : X.Opens)
(V : Y.Opens)
(e : U ≤ (TopologicalSpace.Opens.map f.base).obj V)
[LocallyOfFiniteType f]
:
LocallyOfFiniteType (Scheme.Hom.resLE f V U e)
theorem
AlgebraicGeometry.LocallyOfFiniteType.stalkMap
{X Y : Scheme}
(f : X ⟶ Y)
[LocallyOfFiniteType f]
(x : ↥X)
:
instance
AlgebraicGeometry.instJacobsonSpaceCarrierCarrierCommRingCatSpecOfOfIsJacobsonRing
{R : Type u_1}
[CommRing R]
[IsJacobsonRing R]
:
JacobsonSpace ↥(Spec { carrier := R, commRing := inst✝ })
theorem
AlgebraicGeometry.LocallyOfFiniteType.jacobsonSpace
{X Y : Scheme}
(f : X ⟶ Y)
[LocallyOfFiniteType f]
[JacobsonSpace ↥Y]
: