Documentation

Mathlib.AlgebraicGeometry.Morphisms.FiniteType

Morphisms of finite type #

A morphism of schemes f : X ⟶ Y is locally of finite type if for each affine U ⊆ Y and V ⊆ f ⁻¹' U, The induced map Γ(Y, U) ⟶ Γ(X, V) is of finite type.

A morphism of schemes is of finite type if it is both locally of finite type and quasi-compact.

We show that these properties are local, and are stable under compositions and base change.

A morphism of schemes f : X ⟶ Y is locally of finite type if for each affine U ⊆ Y and V ⊆ f ⁻¹' U, The induced map Γ(Y, U) ⟶ Γ(X, V) is of finite type.

Instances
    theorem AlgebraicGeometry.locallyOfFiniteType_iff {X Y : Scheme} (f : X Y) :
    LocallyOfFiniteType f ∀ (U : Y.affineOpens) (V : X.affineOpens) (e : V (TopologicalSpace.Opens.map f.base).obj U), (Scheme.Hom.appLE f (↑U) (↑V) e).hom.FiniteType
    theorem AlgebraicGeometry.LocallyOfFiniteType.jacobsonSpace {X Y : Scheme} (f : X Y) [LocallyOfFiniteType f] [JacobsonSpace Y.toPresheafedSpace] :
    JacobsonSpace X.toPresheafedSpace