The meta properties of finite-type ring homomorphisms. #
Main results #
Let R
be a commutative ring, S
is an R
-algebra, M
be a submonoid of R
.
finiteType_localizationPreserves
: IfS
is a finite typeR
-algebra, thenS' = M⁻¹S
is a finite typeR' = M⁻¹R
-algebra.finiteType_ofLocalizationSpan
:S
is a finite typeR
-algebra if there exists a set{ r }
that spansR
such thatSᵣ
is a finite typeRᵣ
-algebra. *RingHom.finiteType_is_local
:RingHom.FiniteType
is a local property.
If S
is a finite type R
-algebra, then S' = M⁻¹S
is a finite type R' = M⁻¹R
-algebra.
theorem
RingHom.localization_away_map_finiteType
{R S : Type u}
[CommRing R]
[CommRing S]
(f : R →+* S)
(R' S' : Type u)
[CommRing R']
[CommRing S']
[Algebra R R']
[Algebra S S']
(r : R)
[IsLocalization.Away r R']
[IsLocalization.Away (f r) S']
(hf : f.FiniteType)
:
(IsLocalization.Away.map R' S' f r).FiniteType
theorem
RingHom.IsLocalization.exists_smul_mem_of_mem_adjoin
{R S : Type u}
[CommRing R]
[CommRing S]
{S' : Type u}
[CommRing S']
[Algebra S S']
[Algebra R S]
[Algebra R S']
[IsScalarTower R S S']
(M : Submonoid S)
[IsLocalization M S']
(x : S)
(s : Finset S')
(A : Subalgebra R S)
(hA₁ : ↑(IsLocalization.finsetIntegerMultiple M s) ⊆ ↑A)
(hA₂ : M ≤ A.toSubmonoid)
(hx : (algebraMap S S') x ∈ Algebra.adjoin R ↑s)
:
Let S
be an R
-algebra, M
a submonoid of S
, S' = M⁻¹S
.
Suppose the image of some x : S
falls in the adjoin of some finite s ⊆ S'
over R
,
and A
is an R
-subalgebra of S
containing both M
and the numerators of s
.
Then, there exists some m : M
such that m • x
falls in A
.
theorem
RingHom.IsLocalization.lift_mem_adjoin_finsetIntegerMultiple
{R S : Type u}
[CommRing R]
[CommRing S]
(M : Submonoid R)
{S' : Type u}
[CommRing S']
[Algebra S S']
[Algebra R S]
[Algebra R S']
[IsScalarTower R S S']
[IsLocalization (Submonoid.map (algebraMap R S) M) S']
(x : S)
(s : Finset S')
(hx : (algebraMap S S') x ∈ Algebra.adjoin R ↑s)
:
∃ (m : ↥M), m • x ∈ Algebra.adjoin R ↑(IsLocalization.finsetIntegerMultiple (Submonoid.map (algebraMap R S) M) s)
Let S
be an R
-algebra, M
a submonoid of R
, and S' = M⁻¹S
.
If the image of some x : S
falls in the adjoin of some finite s ⊆ S'
over R
,
then there exists some m : M
such that m • x
falls in the
adjoin of IsLocalization.finsetIntegerMultiple _ s
over R
.