Documentation

Mathlib.RingTheory.RingHom.FiniteType

The meta properties of finite-type ring homomorphisms. #

Main results #

Let R be a commutative ring, S is an R-algebra, M be a submonoid of R.

If S is a finite type R-algebra, then S' = M⁻¹S is a finite type R' = M⁻¹R-algebra.

theorem RingHom.localization_away_map_finiteType {R S : Type u} [CommRing R] [CommRing S] (f : R →+* S) (R' S' : Type u) [CommRing R'] [CommRing S'] [Algebra R R'] [Algebra S S'] (r : R) [IsLocalization.Away r R'] [IsLocalization.Away (f r) S'] (hf : f.FiniteType) :
(IsLocalization.Away.map R' S' f r).FiniteType
theorem RingHom.IsLocalization.exists_smul_mem_of_mem_adjoin {R S : Type u} [CommRing R] [CommRing S] {S' : Type u} [CommRing S'] [Algebra S S'] [Algebra R S] [Algebra R S'] [IsScalarTower R S S'] (M : Submonoid S) [IsLocalization M S'] (x : S) (s : Finset S') (A : Subalgebra R S) (hA₁ : (IsLocalization.finsetIntegerMultiple M s) A) (hA₂ : M A.toSubmonoid) (hx : (algebraMap S S') x Algebra.adjoin R s) :
∃ (m : M), m x A

Let S be an R-algebra, M a submonoid of S, S' = M⁻¹S. Suppose the image of some x : S falls in the adjoin of some finite s ⊆ S' over R, and A is an R-subalgebra of S containing both M and the numerators of s. Then, there exists some m : M such that m • x falls in A.

theorem RingHom.IsLocalization.lift_mem_adjoin_finsetIntegerMultiple {R S : Type u} [CommRing R] [CommRing S] (M : Submonoid R) {S' : Type u} [CommRing S'] [Algebra S S'] [Algebra R S] [Algebra R S'] [IsScalarTower R S S'] [IsLocalization (Submonoid.map (algebraMap R S) M) S'] (x : S) (s : Finset S') (hx : (algebraMap S S') x Algebra.adjoin R s) :

Let S be an R-algebra, M a submonoid of R, and S' = M⁻¹S. If the image of some x : S falls in the adjoin of some finite s ⊆ S' over R, then there exists some m : M such that m • x falls in the adjoin of IsLocalization.finsetIntegerMultiple _ s over R.