The meta properties of finite ring homomorphisms. #
Main results #
Let R
be a commutative ring, S
is an R
-algebra, M
be a submonoid of R
.
finite_localizationPreserves
: IfS
is a finiteR
-algebra, thenS' = M⁻¹S
is a finiteR' = M⁻¹R
-algebra.finite_ofLocalizationSpan
:S
is a finiteR
-algebra if there exists a set{ r }
that spansR
such thatSᵣ
is a finiteRᵣ
-algebra.
theorem
Module.Finite_of_isLocalization
(R : Type u_1)
(S : Type u_2)
(Rₚ : Type u_3)
(Sₚ : Type u_4)
[CommSemiring R]
[CommRing S]
[CommRing Rₚ]
[CommRing Sₚ]
[Algebra R S]
[Algebra R Rₚ]
[Algebra R Sₚ]
[Algebra S Sₚ]
[Algebra Rₚ Sₚ]
[IsScalarTower R S Sₚ]
[IsScalarTower R Rₚ Sₚ]
(M : Submonoid R)
[IsLocalization M Rₚ]
[IsLocalization (Algebra.algebraMapSubmonoid S M) Sₚ]
[hRS : Module.Finite R S]
:
Module.Finite Rₚ Sₚ
If S
is a finite R
-algebra, then S' = M⁻¹S
is a finite R' = M⁻¹R
-algebra.
theorem
RingHom.localization_away_map_finite
{R S : Type u}
[CommRing R]
[CommRing S]
(f : R →+* S)
(R' S' : Type u)
[CommRing R']
[CommRing S']
[Algebra R R']
[Algebra S S']
(r : R)
[IsLocalization.Away r R']
[IsLocalization.Away (f r) S']
(hf : f.Finite)
:
(IsLocalization.Away.map R' S' f r).Finite
theorem
IsLocalization.smul_mem_finsetIntegerMultiple_span
{R S : Type u}
[CommRing R]
[CommRing S]
(M : Submonoid R)
(S' : Type u)
[CommRing S']
[Algebra S S']
[Algebra R S]
[Algebra R S']
[IsScalarTower R S S']
[IsLocalization (Submonoid.map (algebraMap R S) M) S']
(x : S)
(s : Finset S')
(hx : (algebraMap S S') x ∈ Submodule.span R ↑s)
:
∃ (m : ↥M), m • x ∈ Submodule.span R ↑(IsLocalization.finsetIntegerMultiple (Submonoid.map (algebraMap R S) M) s)
Let S
be an R
-algebra, M
a submonoid of R
, and S' = M⁻¹S
.
If the image of some x : S
falls in the span of some finite s ⊆ S'
over R
,
then there exists some m : M
such that m • x
falls in the
span of IsLocalization.finsetIntegerMultiple _ s
over R
.
theorem
multiple_mem_span_of_mem_localization_span
{R : Type u}
[CommRing R]
(M : Submonoid R)
(R' : Type u)
[CommRing R']
[Algebra R R']
{N : Type u_1}
[AddCommMonoid N]
[Module R N]
[Module R' N]
[IsScalarTower R R' N]
[IsLocalization M R']
(s : Set N)
(x : N)
(hx : x ∈ Submodule.span R' s)
:
∃ (t : ↥M), t • x ∈ Submodule.span R s
If M
is an R' = S⁻¹R
module, and x ∈ span R' s
,
then t • x ∈ span R s
for some t : S
.
theorem
multiple_mem_adjoin_of_mem_localization_adjoin
{R S : Type u}
[CommRing R]
[CommRing S]
(M : Submonoid R)
(R' : Type u)
[CommRing R']
[Algebra R R']
[Algebra R' S]
[Algebra R S]
[IsScalarTower R R' S]
[IsLocalization M R']
(s : Set S)
(x : S)
(hx : x ∈ Algebra.adjoin R' s)
:
∃ (t : ↥M), t • x ∈ Algebra.adjoin R s
If S
is an R' = M⁻¹R
algebra, and x ∈ adjoin R' s
,
then t • x ∈ adjoin R s
for some t : M
.
S
is a finite R
-algebra if there exists a set { r }
that
spans R
such that Sᵣ
is a finite Rᵣ
-algebra.