Documentation

Mathlib.Topology.JacobsonSpace

Jacobson spaces #

Main results #

References #

def closedPoints (X : Type u_1) [TopologicalSpace X] :
Set X

The set of closed points.

Equations
Instances For
    @[simp]
    theorem mem_closedPoints_iff {X : Type u_1} [TopologicalSpace X] {x : X} :
    theorem jacobsonSpace_iff (X : Type u_1) [TopologicalSpace X] :
    JacobsonSpace X ∀ {Z : Set X}, IsClosed Zclosure (Z closedPoints X) = Z

    The class of jacobson spaces, i.e. spaces such that the set of closed points are dense in every closed subspace.

    Instances
      theorem JacobsonSpace.closure_inter_closedPoints {X : Type u_1} :
      ∀ {inst : TopologicalSpace X} [self : JacobsonSpace X] {Z : Set X}, IsClosed Zclosure (Z closedPoints X) = Z
      theorem jacobsonSpace_iff_locallyClosed {X : Type u_1} [TopologicalSpace X] :
      JacobsonSpace X ∀ (Z : Set X), Z.NonemptyIsLocallyClosed Z(Z closedPoints X).Nonempty
      theorem nonempty_inter_closedPoints {X : Type u_1} [TopologicalSpace X] [JacobsonSpace X] {Z : Set X} (hZ : Z.Nonempty) (hZ' : IsLocallyClosed Z) :
      (Z closedPoints X).Nonempty
      @[instance 100]
      Equations
      • =
      @[instance 100]
      Equations
      • =
      theorem jacobsonSpace_iff_of_iSup_eq_top {X : Type u_2} [TopologicalSpace X] {ι : Type u_1} {U : ιTopologicalSpace.Opens X} (hU : iSup U = ) :
      JacobsonSpace X ∀ (i : ι), JacobsonSpace (U i)