Consequences of model category axioms #
In this file, we deduce basic properties of fibrations, cofibrations, and weak equivalences from the axioms of model categories.
instance
HomotopicalAlgebra.instIsStableUnderRetractsTrivialCofibrationsOfCofibrationsOfWeakEquivalences
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[(cofibrations C).IsStableUnderRetracts]
[(weakEquivalences C).IsStableUnderRetracts]
:
instance
HomotopicalAlgebra.instCofibrationCompOfIsStableUnderCompositionCofibrations
(C : Type u)
[CategoryTheory.Category.{v, u} C]
{X Y Z : C}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[CategoryWithCofibrations C]
[(cofibrations C).IsStableUnderComposition]
[hf : Cofibration f]
[hg : Cofibration g]
:
instance
HomotopicalAlgebra.instFibrationCompOfIsStableUnderCompositionFibrations
(C : Type u)
[CategoryTheory.Category.{v, u} C]
{X Y Z : C}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[CategoryWithFibrations C]
[(fibrations C).IsStableUnderComposition]
[hf : Fibration f]
[hg : Fibration g]
:
instance
HomotopicalAlgebra.instWeakEquivalenceCompOfIsStableUnderCompositionWeakEquivalences
(C : Type u)
[CategoryTheory.Category.{v, u} C]
{X Y Z : C}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[CategoryWithWeakEquivalences C]
[(weakEquivalences C).IsStableUnderComposition]
[hf : WeakEquivalence f]
[hg : WeakEquivalence g]
:
theorem
HomotopicalAlgebra.weakEquivalence_of_postcomp
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[(weakEquivalences C).HasTwoOutOfThreeProperty]
{X Y Z : C}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[hg : WeakEquivalence g]
[hfg : WeakEquivalence (CategoryTheory.CategoryStruct.comp f g)]
:
theorem
HomotopicalAlgebra.weakEquivalence_of_precomp
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[(weakEquivalences C).HasTwoOutOfThreeProperty]
{X Y Z : C}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[hf : WeakEquivalence f]
[hfg : WeakEquivalence (CategoryTheory.CategoryStruct.comp f g)]
:
theorem
HomotopicalAlgebra.weakEquivalence_postcomp_iff
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[(weakEquivalences C).HasTwoOutOfThreeProperty]
{X Y Z : C}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[WeakEquivalence g]
:
theorem
HomotopicalAlgebra.weakEquivalence_precomp_iff
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[(weakEquivalences C).HasTwoOutOfThreeProperty]
{X Y Z : C}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[WeakEquivalence f]
:
theorem
HomotopicalAlgebra.weakEquivalence_of_postcomp_of_fac
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[(weakEquivalences C).HasTwoOutOfThreeProperty]
{X Y Z : C}
{f : X ⟶ Y}
{g : Y ⟶ Z}
{fg : X ⟶ Z}
(fac : CategoryTheory.CategoryStruct.comp f g = fg)
[WeakEquivalence g]
[hfg : WeakEquivalence fg]
:
theorem
HomotopicalAlgebra.weakEquivalence_of_precomp_of_fac
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[(weakEquivalences C).HasTwoOutOfThreeProperty]
{X Y Z : C}
{f : X ⟶ Y}
{g : Y ⟶ Z}
{fg : X ⟶ Z}
(fac : CategoryTheory.CategoryStruct.comp f g = fg)
[WeakEquivalence f]
[WeakEquivalence fg]
:
theorem
HomotopicalAlgebra.fibrations_llp
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[CategoryWithFibrations C]
[(trivialCofibrations C).IsWeakFactorizationSystem (fibrations C)]
:
theorem
HomotopicalAlgebra.trivialCofibrations_rlp
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[CategoryWithFibrations C]
[(trivialCofibrations C).IsWeakFactorizationSystem (fibrations C)]
:
instance
HomotopicalAlgebra.isStableUnderCoproductsOfShape_trivialCofibrations
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[CategoryWithFibrations C]
[(trivialCofibrations C).IsWeakFactorizationSystem (fibrations C)]
(J : Type w)
:
instance
HomotopicalAlgebra.isStableUnderProductsOfShape_fibrations
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[CategoryWithFibrations C]
[(trivialCofibrations C).IsWeakFactorizationSystem (fibrations C)]
(J : Type w)
:
theorem
HomotopicalAlgebra.trivialFibrations_llp
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[CategoryWithFibrations C]
[(cofibrations C).IsWeakFactorizationSystem (trivialFibrations C)]
:
theorem
HomotopicalAlgebra.cofibrations_rlp
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[CategoryWithFibrations C]
[(cofibrations C).IsWeakFactorizationSystem (trivialFibrations C)]
:
instance
HomotopicalAlgebra.isStableUnderCoproductsOfShape_cofibrations
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[CategoryWithFibrations C]
[(cofibrations C).IsWeakFactorizationSystem (trivialFibrations C)]
(J : Type w)
:
instance
HomotopicalAlgebra.isStableUnderProductsOfShape_trivialFibrations
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[CategoryWithFibrations C]
[(cofibrations C).IsWeakFactorizationSystem (trivialFibrations C)]
(J : Type w)
:
instance
HomotopicalAlgebra.instCofibrationInlOfIsStableUnderCobaseChangeCofibrations
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithCofibrations C]
{X Y Z : C}
(f : X ⟶ Y)
(g : X ⟶ Z)
[CategoryTheory.Limits.HasPushout f g]
[(cofibrations C).IsStableUnderCobaseChange]
[hg : Cofibration g]
:
instance
HomotopicalAlgebra.instCofibrationInrOfIsStableUnderCobaseChangeCofibrations
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithCofibrations C]
{X Y Z : C}
(f : X ⟶ Y)
(g : X ⟶ Z)
[CategoryTheory.Limits.HasPushout f g]
[(cofibrations C).IsStableUnderCobaseChange]
[hf : Cofibration f]
:
instance
HomotopicalAlgebra.instWeakEquivalenceInlOfIsStableUnderCobaseChangeTrivialCofibrationsOfCofibration
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
{X Y Z : C}
(f : X ⟶ Y)
(g : X ⟶ Z)
[CategoryTheory.Limits.HasPushout f g]
[(trivialCofibrations C).IsStableUnderCobaseChange]
[Cofibration g]
[WeakEquivalence g]
:
instance
HomotopicalAlgebra.instWeakEquivalenceInrOfIsStableUnderCobaseChangeTrivialCofibrationsOfCofibration
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
{X Y Z : C}
(f : X ⟶ Y)
(g : X ⟶ Z)
[CategoryTheory.Limits.HasPushout f g]
[(trivialCofibrations C).IsStableUnderCobaseChange]
[Cofibration f]
[WeakEquivalence f]
:
instance
HomotopicalAlgebra.instFibrationSndOfIsStableUnderBaseChangeFibrations
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithFibrations C]
{X Y Z : C}
(f : X ⟶ Z)
(g : Y ⟶ Z)
[CategoryTheory.Limits.HasPullback f g]
[(fibrations C).IsStableUnderBaseChange]
[hf : Fibration f]
:
instance
HomotopicalAlgebra.instFibrationFstOfIsStableUnderBaseChangeFibrations
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithFibrations C]
{X Y Z : C}
(f : X ⟶ Z)
(g : Y ⟶ Z)
[CategoryTheory.Limits.HasPullback f g]
[(fibrations C).IsStableUnderBaseChange]
[hg : Fibration g]
:
instance
HomotopicalAlgebra.instWeakEquivalenceSndOfIsStableUnderBaseChangeTrivialFibrationsOfFibration
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithFibrations C]
{X Y Z : C}
(f : X ⟶ Z)
(g : Y ⟶ Z)
[CategoryTheory.Limits.HasPullback f g]
[(trivialFibrations C).IsStableUnderBaseChange]
[Fibration f]
[WeakEquivalence f]
:
instance
HomotopicalAlgebra.instWeakEquivalenceFstOfIsStableUnderBaseChangeTrivialFibrationsOfFibration
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithFibrations C]
{X Y Z : C}
(f : X ⟶ Z)
(g : Y ⟶ Z)
[CategoryTheory.Limits.HasPullback f g]
[(trivialFibrations C).IsStableUnderBaseChange]
[Fibration g]
[WeakEquivalence g]
:
instance
HomotopicalAlgebra.instCofibrationMapOfIsWeakFactorizationSystemCofibrationsTrivialFibrations
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[CategoryWithFibrations C]
{J : Type u_1}
{X Y : J → C}
(f : (i : J) → X i ⟶ Y i)
[CategoryTheory.Limits.HasCoproduct X]
[CategoryTheory.Limits.HasCoproduct Y]
[h : ∀ (i : J), Cofibration (f i)]
[(cofibrations C).IsWeakFactorizationSystem (trivialFibrations C)]
:
instance
HomotopicalAlgebra.instWeakEquivalenceMapOfIsWeakFactorizationSystemTrivialCofibrationsFibrations
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[CategoryWithFibrations C]
{J : Type u_1}
{X Y : J → C}
(f : (i : J) → X i ⟶ Y i)
[CategoryTheory.Limits.HasCoproduct X]
[CategoryTheory.Limits.HasCoproduct Y]
[h : ∀ (i : J), Cofibration (f i)]
[(trivialCofibrations C).IsWeakFactorizationSystem (fibrations C)]
[∀ (i : J), WeakEquivalence (f i)]
:
instance
HomotopicalAlgebra.instFibrationMapOfIsWeakFactorizationSystemTrivialCofibrationsFibrations
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[CategoryWithFibrations C]
{J : Type u_1}
{X Y : J → C}
(f : (i : J) → X i ⟶ Y i)
[CategoryTheory.Limits.HasProduct X]
[CategoryTheory.Limits.HasProduct Y]
[h : ∀ (i : J), Fibration (f i)]
[(trivialCofibrations C).IsWeakFactorizationSystem (fibrations C)]
:
instance
HomotopicalAlgebra.instWeakEquivalenceMapOfIsWeakFactorizationSystemCofibrationsTrivialFibrations
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[CategoryWithFibrations C]
{J : Type u_1}
{X Y : J → C}
(f : (i : J) → X i ⟶ Y i)
[CategoryTheory.Limits.HasProduct X]
[CategoryTheory.Limits.HasProduct Y]
[h : ∀ (i : J), Fibration (f i)]
[(cofibrations C).IsWeakFactorizationSystem (trivialFibrations C)]
[∀ (i : J), WeakEquivalence (f i)]
:
instance
HomotopicalAlgebra.instCofibrationMapOfIsWeakFactorizationSystemCofibrationsTrivialFibrations_1
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[CategoryWithFibrations C]
{X₁ X₂ Y₁ Y₂ : C}
(f₁ : X₁ ⟶ Y₁)
(f₂ : X₂ ⟶ Y₂)
[(cofibrations C).IsWeakFactorizationSystem (trivialFibrations C)]
[h₁ : Cofibration f₁]
[h₂ : Cofibration f₂]
[CategoryTheory.Limits.HasBinaryCoproduct X₁ X₂]
[CategoryTheory.Limits.HasBinaryCoproduct Y₁ Y₂]
:
instance
HomotopicalAlgebra.instFibrationMapOfIsWeakFactorizationSystemTrivialCofibrationsFibrations_1
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[CategoryWithFibrations C]
{X₁ X₂ Y₁ Y₂ : C}
(f₁ : X₁ ⟶ Y₁)
(f₂ : X₂ ⟶ Y₂)
[(trivialCofibrations C).IsWeakFactorizationSystem (fibrations C)]
[h₁ : Fibration f₁]
[h₂ : Fibration f₂]
[CategoryTheory.Limits.HasBinaryProduct X₁ X₂]
[CategoryTheory.Limits.HasBinaryProduct Y₁ Y₂]
:
instance
HomotopicalAlgebra.instCofibrationOfIsWeakFactorizationSystemTrivialCofibrationsFibrationsOfIsIso
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[CategoryWithFibrations C]
{X Y : C}
(f : X ⟶ Y)
[(trivialCofibrations C).IsWeakFactorizationSystem (fibrations C)]
[CategoryTheory.IsIso f]
:
instance
HomotopicalAlgebra.instFibrationOfIsWeakFactorizationSystemCofibrationsTrivialFibrationsOfIsIso
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[CategoryWithFibrations C]
{X Y : C}
(f : X ⟶ Y)
[(cofibrations C).IsWeakFactorizationSystem (trivialFibrations C)]
[CategoryTheory.IsIso f]
:
instance
HomotopicalAlgebra.instWeakEquivalenceOfIsWeakFactorizationSystemTrivialCofibrationsFibrationsOfIsStableUnderRetractsWeakEquivalencesOfIsIso
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[CategoryWithFibrations C]
{X Y : C}
(f : X ⟶ Y)
[(trivialCofibrations C).IsWeakFactorizationSystem (fibrations C)]
[(weakEquivalences C).IsStableUnderRetracts]
[CategoryTheory.IsIso f]
:
instance
HomotopicalAlgebra.instIsMultiplicativeWeakEquivalencesOfIsWeakFactorizationSystemTrivialCofibrationsFibrationsOfIsStableUnderRetractsOfIsStableUnderComposition
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[CategoryWithFibrations C]
[(trivialCofibrations C).IsWeakFactorizationSystem (fibrations C)]
[(weakEquivalences C).IsStableUnderRetracts]
[(weakEquivalences C).IsStableUnderComposition]
:
instance
HomotopicalAlgebra.instRespectsIsoWeakEquivalencesOfIsWeakFactorizationSystemTrivialCofibrationsFibrationsOfIsStableUnderRetractsOfIsStableUnderComposition
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[CategoryWithFibrations C]
[(trivialCofibrations C).IsWeakFactorizationSystem (fibrations C)]
[(weakEquivalences C).IsStableUnderRetracts]
[(weakEquivalences C).IsStableUnderComposition]
: