2-truncated quasicategories and homotopy relations #
We define 2-truncated quasicategories Quasicategory₂ by three horn-filling properties,
and the left and right homotopy relations HomotopicL and HomotopicR on the edges in a
2-truncated simplicial set.
We prove that for 2-truncated quasicategories, both homotopy relations are equivalence relations, and that the left and right homotopy relations coincide.
Implementation notes #
Throughout this file, we make use of Edge and CompStruct to conveniently deal with
edges and triangles in a 2-truncated simplicial set.
A 2-truncated quasicategory is a 2-truncated simplicial set with the properties:
- (2, 1)-filling: given two consecutive
Edgese₀₁ande₁₂, there exists aCompStructwith (0, 1)-edgee₀₁and (0, 2)-edgee₁₂. - (3, 1)-filling: given three
CompStructsf₃,f₀andf₂which form a (3, 1)-horn, there exists a fourthCompStructsuch that the four faces form the boundary ∂Δ[3] of a 3-simplex. - (3, 2)-filling: given three
CompStructsf₃,f₀andf₁which form a (3, 2)-horn, there exists a fourthCompStructsuch that the four faces form the boundary ∂Δ[3] of a 3-simplex.
- fill21 {x₀ x₁ x₂ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := ⋯ })} (e₀₁ : Edge x₀ x₁) (e₁₂ : Edge x₁ x₂) : Nonempty ((e₀₂ : Edge x₀ x₂) × e₀₁.CompStruct e₁₂ e₀₂)
- fill31 {x₀ x₁ x₂ x₃ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := ⋯ })} {e₀₁ : Edge x₀ x₁} {e₁₂ : Edge x₁ x₂} {e₂₃ : Edge x₂ x₃} {e₀₂ : Edge x₀ x₂} {e₁₃ : Edge x₁ x₃} {e₀₃ : Edge x₀ x₃} (f₃ : e₀₁.CompStruct e₁₂ e₀₂) (f₀ : e₁₂.CompStruct e₂₃ e₁₃) (f₂ : e₀₁.CompStruct e₁₃ e₀₃) : Nonempty (e₀₂.CompStruct e₂₃ e₀₃)
- fill32 {x₀ x₁ x₂ x₃ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := ⋯ })} {e₀₁ : Edge x₀ x₁} {e₁₂ : Edge x₁ x₂} {e₂₃ : Edge x₂ x₃} {e₀₂ : Edge x₀ x₂} {e₁₃ : Edge x₁ x₃} {e₀₃ : Edge x₀ x₃} (f₃ : e₀₁.CompStruct e₁₂ e₀₂) (f₀ : e₁₂.CompStruct e₂₃ e₁₃) (f₁ : e₀₂.CompStruct e₂₃ e₀₃) : Nonempty (e₀₁.CompStruct e₁₃ e₀₃)
Instances
Two edges f and g are left homotopic if there is a CompStruct with
(0, 1)-edge f, (1, 2)-edge id and (0, 2)-edge g. We use Nonempty to
have a Prop valued HomotopicL.
Equations
- SSet.Truncated.HomotopicL f g = Nonempty (f.CompStruct (SSet.Truncated.Edge.id y) g)
Instances For
Two edges f and g are right homotopic if there is a CompStruct with
(0, 1)-edge id, (1, 2)-edge f, and (0, 2)-edge g. We use Nonempty to
have a Prop valued HomotopicR.
Equations
- SSet.Truncated.HomotopicR f g = Nonempty ((SSet.Truncated.Edge.id x).CompStruct f g)
Instances For
Left homotopy relation is reflexive
Left homotopy relation is symmetric
Left homotopy relation is transitive
Right homotopy relation is reflexive
Right homotopy relation is symmetric
Right homotopy relation is transitive
In a 2-truncated quasicategory, left homotopy implies right homotopy
In a 2-truncated quasicategory, right homotopy implies left homotopy
In a 2-truncated quasicategory, the right and left homotopy relations coincide