Documentation

Mathlib.AlgebraicTopology.SimplicialSet.CompStructTruncated

Edges and "triangles" in truncated simplicial sets #

Given a 2-truncated simplicial set X, we introduce two types:

structure SSet.Truncated.Edge {X : Truncated 2} (x₀ x₁ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })) :

In a 2-truncated simplicial set, an edge from a vertex x₀ to x₁ is a 1-simplex with prescribed 0-dimensional faces.

Instances For
    theorem SSet.Truncated.Edge.ext_iff {X : Truncated 2} {x₀ x₁ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {x y : Edge x₀ x₁} :
    x = y x.edge = y.edge
    theorem SSet.Truncated.Edge.ext {X : Truncated 2} {x₀ x₁ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {x y : Edge x₀ x₁} (edge : x.edge = y.edge) :
    x = y
    def SSet.Truncated.Edge.mk' {X : Truncated 2} (s : X.obj (Opposite.op { obj := SimplexCategory.mk 1, property := })) :

    The edge given by a 1-simplex.

    Equations
    Instances For
      @[simp]
      theorem SSet.Truncated.Edge.mk'_edge {X : Truncated 2} (s : X.obj (Opposite.op { obj := SimplexCategory.mk 1, property := })) :
      (mk' s).edge = s
      theorem SSet.Truncated.Edge.exists_of_simplex {X : Truncated 2} (s : X.obj (Opposite.op { obj := SimplexCategory.mk 1, property := })) :
      ∃ (x₀ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })) (x₁ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })) (e : Edge x₀ x₁), e.edge = s
      def SSet.Truncated.Edge.id {X : Truncated 2} (x : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })) :
      Edge x x

      The constant edge on a 0-simplex.

      Equations
      Instances For
        def SSet.Truncated.Edge.map {X Y : Truncated 2} {x₀ x₁ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} (e : Edge x₀ x₁) (f : X Y) :
        Edge (f.app (Opposite.op { obj := SimplexCategory.mk 0, property := }) x₀) (f.app (Opposite.op { obj := SimplexCategory.mk 0, property := }) x₁)

        The image of an edge by a morphism of truncated simplicial sets.

        Equations
        Instances For
          @[simp]
          theorem SSet.Truncated.Edge.map_edge {X Y : Truncated 2} {x₀ x₁ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} (e : Edge x₀ x₁) (f : X Y) :
          (e.map f).edge = f.app (Opposite.op { obj := SimplexCategory.mk 1, property := mk'._proof_1 }) e.edge
          @[simp]
          theorem SSet.Truncated.Edge.map_id {X Y : Truncated 2} (x : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })) (f : X Y) :
          (id x).map f = id (f.app (Opposite.op { obj := SimplexCategory.mk 0, property := }) x)
          structure SSet.Truncated.Edge.CompStruct {X : Truncated 2} {x₀ x₁ x₂ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} (e₀₁ : Edge x₀ x₁) (e₁₂ : Edge x₁ x₂) (e₀₂ : Edge x₀ x₂) :

          Let x₀, x₁, x₂ be 0-simplices of a 2-truncated simplicial set X, e₀₁ an edge from x₀ to x₁, e₁₂ an edge from x₁ to x₂, e₀₂ an edge from x₀ to x₂. This is the data of a 2-simplex whose faces are respectively e₀₂, e₁₂ and e₀₁. Such structures shall provide relations in the homotopy category of arbitrary (truncated) simplicial sets (and specialized constructions for quasicategories and Kan complexes.).

          Instances For
            theorem SSet.Truncated.Edge.CompStruct.ext {X : Truncated 2} {x₀ x₁ x₂ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {e₀₁ : Edge x₀ x₁} {e₁₂ : Edge x₁ x₂} {e₀₂ : Edge x₀ x₂} {x y : e₀₁.CompStruct e₁₂ e₀₂} (simplex : x.simplex = y.simplex) :
            x = y
            theorem SSet.Truncated.Edge.CompStruct.ext_iff {X : Truncated 2} {x₀ x₁ x₂ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {e₀₁ : Edge x₀ x₁} {e₁₂ : Edge x₁ x₂} {e₀₂ : Edge x₀ x₂} {x y : e₀₁.CompStruct e₁₂ e₀₂} :
            theorem SSet.Truncated.Edge.CompStruct.exists_of_simplex {X : Truncated 2} (s : X.obj (Opposite.op { obj := SimplexCategory.mk 2, property := })) :
            ∃ (x₀ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })) (x₁ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })) (x₂ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })) (e₀₁ : Edge x₀ x₁) (e₁₂ : Edge x₁ x₂) (e₀₂ : Edge x₀ x₂) (h : e₀₁.CompStruct e₁₂ e₀₂), h.simplex = s
            def SSet.Truncated.Edge.CompStruct.idComp {X : Truncated 2} {x y : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} (e : Edge x y) :
            (id x).CompStruct e e

            e : Edge x y is a composition of Edge.id x with e.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              def SSet.Truncated.Edge.CompStruct.compId {X : Truncated 2} {x y : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} (e : Edge x y) :
              e.CompStruct (id y) e

              e : Edge x y is a composition of e with Edge.id y.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                def SSet.Truncated.Edge.CompStruct.map {X Y : Truncated 2} {x₀ x₁ x₂ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {e₀₁ : Edge x₀ x₁} {e₁₂ : Edge x₁ x₂} {e₀₂ : Edge x₀ x₂} (h : e₀₁.CompStruct e₁₂ e₀₂) (f : X Y) :
                (e₀₁.map f).CompStruct (e₁₂.map f) (e₀₂.map f)

                The image of a Edge.CompStruct by a morphism of 2-truncated simplicial sets.

                Equations
                Instances For
                  @[simp]
                  theorem SSet.Truncated.Edge.CompStruct.map_simplex {X Y : Truncated 2} {x₀ x₁ x₂ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {e₀₁ : Edge x₀ x₁} {e₁₂ : Edge x₁ x₂} {e₀₂ : Edge x₀ x₂} (h : e₀₁.CompStruct e₁₂ e₀₂) (f : X Y) :
                  (h.map f).simplex = f.app (Opposite.op { obj := SimplexCategory.mk 2, property := map._proof_1 }) h.simplex